P190B RhoGAP Regulates Chromosome Segregation in Cancer Cells

Department of Biochemistry and Molecular Biology and the Indiana University Simon Cancer Center, Indiana University School of Medicine, 1234 Notre Dame Avenue, South Bend, IN 46617, USA.
Cancers 06/2012; 4(2):475-489. DOI: 10.3390/cancers4020475
Source: PubMed


Rho GTPases are overexpressed and hyperactivated in many cancers, including breast cancer. Rho proteins, as well as their regulators and effectors, have been implicated in mitosis, and their altered expression promotes mitotic defects and aneuploidy. Previously, we demonstrated that p190B Rho GTPase activating protein (RhoGAP) deficiency inhibits ErbB2-induced mammary tumor formation in mice. Here we describe a novel role for p190B as a regulator of mitosis. We found that p190B localized to centrosomes during interphase and mitosis, and that it is differentially phosphorylated during mitosis. Knockdown of p190B expression in MCF-7 and Hela cells increased the incidence of aberrant microtubule-kinetochore attachments at metaphase, lagging chromosomes at anaphase, and micronucleation, all of which are indicative of aneuploidy. Cell cycle analysis of p190B deficient MCF-7 cells revealed a significant increase in apoptotic cells with a concomitant decrease in cells in G1 and S phase, suggesting that p190B deficient cells die at the G1 to S transition. Chemical inhibition of the Rac GTPase during mitosis reduced the incidence of lagging chromosomes in p190B knockdown cells to levels detected in control cells, suggesting that aberrant Rac activity in the absence of p190B promotes chromosome segregation defects. Taken together, these data suggest that p190B regulates chromosome segregation and apoptosis in cancer cells. We propose that disruption of mitosis may be one mechanism by which p190B deficiency inhibits tumorigenesis.

Download full-text


Available from: Tracy Vargo-Gogola,
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small GTP-binding proteins of the Rho family orchestrate the cytoskeleton remodeling events required for cell division. Guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) promote cycling of Rho GTPases between the active GTP-bound and the inactive GDP-bound conformations. We report that ARHGAP19, a previously uncharacterized protein, is predominantly expressed in hematopoietic cells and is a critical actor of T lymphocyte division. Overexpression of ARHGAP19 in lymphocytes delays cell elongation and cytokinesis. Conversely, silencing of ARHGAP19 or expression of a GAP-deficient mutant induces precocious mitotic cell elongation and cleavage furrow ingression, as well as excessive blebbing. In relation with these phenotypes, we show that ARHGAP19 acts as a GAP for RhoA, and controls Citron and Myosin II recruitment to the plasma membrane of mitotic lymphocytes as well as Rock2-mediated phosphorylation of Vimentin, a critical determinant in stiffness and shape of lymphocytes. In addition to its effects on cell shape changes, silencing of ARHGAP19 in lymphocytes also impairs chromosome segregation.
    Journal of Cell Science 11/2013; 127(2). DOI:10.1242/jcs.135079 · 5.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multinucleation is associated with malignant neoplasms; however, the molecular mechanism underlying the nuclear abnormality remains unclear. Loss or mutation of PTEN promotes the development of malignant tumors. We now demonstrate that increased expression of the oncogene MCT-1 (multiple copies in T-cell malignancy 1) antagonizes PTEN gene presentation, PTEN protein stability and PTEN functional activity, thereby further promoting phosphoinositide 3 kinase/AKT signaling, survival rate and malignancies of the PTEN-deficient cells. In the PTEN-null cancer cells, MCT-1 interacts with p190B and Src in vivo, supporting that they are in proximity of the signaling complexes. MCT-1 overexpression and PTEN loss synergistically augments the Src/p190B signaling function that leads to inhibition of RhoA activity. Under such a condition, the incidence of mitotic catastrophes including spindle multipolarity and cytokinesis failure is enhanced, driving an Src/p190B/RhoA-dependent neoplastic multinucleation. Targeting MCT-1 by the short hairpin RNA markedly represses the Src/p190B function, improves nuclear structures and suppresses xenograft tumorigenicity of the PTEN-null breast cancer cells. Consistent with the oncogenic effects in vitro, clinical evidence has confirmed that MCT-1 gene stimulation is correlated with p190B gene promotion and PTEN gene suppression in human breast cancer. Accordingly, MCT-1 gene induction is recognized as a potential biomarker of breast tumor development. Abrogating MCT-1 function may be a promising stratagem for management of breast cancer involving Src hyperactivation and/or PTEN dysfunction.Oncogene advance online publication, 26 May 2014; doi:10.1038/onc.2014.125.
    Oncogene 05/2014; 33(43). DOI:10.1038/onc.2014.125 · 8.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Animal cell division is a fundamental process that requires complex changes in cytoskeletal organization and function. Aberrant cell division often has disastrous consequences for the cell and can lead to cell senescence, neoplastic transformation or death. As important regulators of the actin cytoskeleton, Rho GTPases play major roles in regulating many aspects of mitosis and cytokinesis. These include centrosome duplication and separation, generation of cortical rigidity, microtubule-kinetochore stabilization, cleavage furrow formation, contractile ring formation and constriction, and abscission. The ability of Rho proteins to function as regulators of cell division depends on their ability to cycle between their active, GTP-bound and inactive, GDP-bound states. However, Rho proteins are inherently inefficient at fulfilling this cycle and require the actions of regulatory proteins that enhance GTP binding (RhoGEFs), stimulate GTPase activity (RhoGAPs), and sequester inactive Rho proteins in the cytosol (RhoGDIs). The roles of these regulatory proteins in controlling cell division are an area of active investigation. In this review we will delineate the current state of knowledge of how specific RhoGEFs, RhoGAPs and RhoGDIs control mitosis and cytokinesis, and highlight the mechanisms by which their functions are controlled.
    Cellular Signalling 10/2014; 26(12). DOI:10.1016/j.cellsig.2014.09.022 · 4.32 Impact Factor
Show more