Article

Direct observation of individual endogenous protein complexes in situ by proximity ligation

Nature Methods (Impact Factor: 25.95). 12/2006;

Full-text

Available from: Fuad Bahram, Feb 13, 2014
2 Followers
 · 
296 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several proteins have been linked to neurodegenerative disorders (NDDs), but their molecular function is not completely understood. Here, we used quantitative interaction proteomics to identify binding partners of Amyloid beta precursor protein (APP) and Presenilin-1 (PSEN1) for Alzheimer's disease (AD), Huntingtin (HTT) for Huntington's disease, Parkin (PARK2) for Parkinson's disease, and Ataxin-1 (ATXN1) for spinocerebellar ataxia type 1. Our network reveals common signatures of protein degradation and misfolding and recapitulates known biology. Toxicity modifier screens and comparison to genome-wide association studies show that interaction partners are significantly linked to disease phenotypes in vivo. Direct comparison of wild-type proteins and disease-associated variants identified binders involved in pathogenesis, highlighting the value of differential interactome mapping. Finally, we show that the mitochondrial protein LRPPRC interacts preferentially with an early-onset AD variant of APP. This interaction appears to induce mitochondrial dysfunction, which is an early phenotype of AD.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Here we have shown that β-cytoplasmic actin acts as a tumor suppressor, inhibiting cell growth and invasion in vitro and tumor growth in vivo. In contrast, γ-cytoplasmic actin increases the oncogenic potential via ERK1/2, p34-Arc, WAVE2, cofilin1, PP1 and other regulatory proteins. There is a positive feedback loop between γ-actin expression and ERK1/2 activation. We conclude that non-muscle actin isoforms should not be considered as merely housekeeping proteins and the β/γ-actins ratio can be used as an oncogenic marker at least for lung and colon carcinomas. Agents that increase β- and/or decrease γ-actin expression may be useful for anticancer therapy.
    Oncotarget 05/2015; · 6.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The important role of unconventional myosin VI (MVI) in skeletal and cardiac muscle has been recently postulated (Karolczak et al. in Histochem Cell Biol 139:873-885, 2013). Here, we addressed for the first time a role for this unique myosin motor in myogenic cells as well as during their differentiation into myotubes. During myoblast differentiation, the isoform expression pattern of MVI and its subcellular localization underwent changes. In undifferentiated myoblasts, MVI-stained puncti were seen throughout the cytoplasm and were in close proximity to actin filaments, Golgi apparatus, vinculin-, and talin-rich focal adhesion as well as endoplasmic reticulum. Colocalization of MVI with endoplasmic reticulum was enhanced during myotube formation, and differentiation-dependent association was also seen in sarcoplasmic reticulum of neonatal rat cardiomyocytes (NRCs). Moreover, we observed enrichment of MVI in myotube regions containing acetylcholine receptor-rich clusters, suggesting its involvement in the organization of the muscle postsynaptic machinery. Overexpression of the H246R MVI mutant (associated with hypertrophic cardiomyopathy) in myoblasts and NRCs caused the formation of abnormally large intracellular vesicles. MVI knockdown caused changes in myoblast morphology and inhibition of their migration. On the subcellular level, MVI-depleted myoblasts exhibited aberrations in the organization of actin cytoskeleton and adhesive structures as well as in integrity of Golgi apparatus and endoplasmic reticulum. Also, MVI depletion or overexpression of H246R mutant caused the formation of significantly wider or aberrant myotubes, respectively, indicative of involvement of MVI in myoblast differentiation. The presented results suggest an important role for MVI in myogenic cells and possibly in myoblast differentiation.
    Histochemie 04/2015; DOI:10.1007/s00418-015-1322-6 · 2.93 Impact Factor