Article

Insulin resistance, ceramide accumulation, and endoplasmic reticulum stress in human chronic alcohol-related liver disease.

Division of Gastroenterology, Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA.
Oxidative Medicine and Cellular Longevity 01/2012; 2012:479348. DOI: 10.1155/2012/479348
Source: PubMed

ABSTRACT Chronic alcohol-related liver disease (ALD) is mediated by insulin resistance, mitochondrial dysfunction, inflammation, oxidative stress, and DNA damage. Recent studies suggest that dysregulated lipid metabolism with accumulation of ceramides, together with ER stress potentiate hepatic insulin resistance and may cause steatohepatitis to progress.
We examined the degree to which hepatic insulin resistance in advanced human ALD is correlated with ER stress, dysregulated lipid metabolism, and ceramide accumulation.
We assessed the integrity of insulin signaling through the Akt pathway and measured proceramide and ER stress gene expression, ER stress signaling proteins, and ceramide profiles in liver tissue.
Chronic ALD was associated with increased expression of insulin, IGF-1, and IGF-2 receptors, impaired signaling through IGF-1R and IRS1, increased expression of multiple proceramide and ER stress genes and proteins, and higher levels of the C14, C16, C18, and C20 ceramide species relative to control.
In human chronic ALD, persistent hepatic insulin resistance is associated with dysregulated lipid metabolism, ceramide accumulation, and striking upregulation of multiple ER stress signaling molecules. Given the role of ceramides as mediators of ER stress and insulin resistance, treatment with ceramide enzyme inhibitors may help reverse or halt progression of chronic ALD.

0 Bookmarks
 · 
176 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background and AimChronic alcoholic liver disease is associated with hepatic insulin resistance, dysregulated lipid metabolism with increased toxic lipid (ceramide) accumulation, lipid peroxidation, and oxidative and endoplasmic reticulum (ER) stress. Peroxisome-proliferator activated receptor (PPAR) agonists are insulin sensitizers that can restore hepatic insulin responsiveness in both alcohol and non-alcohol-related steatohepatitis. Herein, we demonstrate that treatment with a PPAR-δ agonist enhances insulin signaling and reduces the severities of ER stress and ceramide accumulation in an experimental model of ethanol-induced steatohepatitis. Methods Adult male Long Evans rats were pair fed with isocaloric liquid diets containing 0% or 37% ethanol (caloric) for 8 weeks. After 3 weeks on the diets, rats were treated with vehicle or PPAR-δ agonist twice weekly by i.p. injection. ResultsEthanol-fed rats developed steatohepatitis with inhibition of signaling through the insulin and insulin-like growth factor-1 receptors, and Akt activated pathways. Despite continued ethanol exposure, PPAR-δ agonist co-treatments increased Akt activation, reduced multiple molecular indices of ER stress and steatohepatitis. Conclusions These results suggest that PPAR-δ agonist rescue of chronic alcoholic liver disease is mediated by enhancement of insulin signaling through Akt/metabolic pathways that reduce lipotoxicity and ER stress.
    Journal of Gastroenterology and Hepatology 01/2013; 28(1). · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are serious health problems worldwide. These two diseases have similar pathological spectra, ranging from simple hepatic steatosis to steatohepatitis, liver cirrhosis, and hepatocellular carcinoma. Although most subjects with excessive alcohol or food intake experience simple hepatic steatosis, a small percentage of individuals will develop progressive liver disease. Notably, both ALD and NAFLD are frequently accompanied by extrahepatic complications, including cardiovascular disease and malignancy. The survival of patients with ALD and NAFLD depends on various disease-associated conditions. This review delineates the clinical characteristics and outcomes of patients with ALD and NAFLD by comparing their epidemiology, the factors associated with disease susceptibility and progression, and the predictors and characteristics of outcomes. A comprehensive understanding of the characteristics and outcomes of ALD and NAFLD is imperative in the management of these chronic liver diseases.
    World journal of gastroenterology : WJG. 07/2014; 20(26):8393-8406.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ethanol-induced neuronal death during a sensitive period of brain development is considered one of the significant causes of fetal alcohol spectrum disorders (FASD). In rodent models, ethanol triggers robust apoptotic neurodegeneration during a period of active synaptogenesis that occurs around the first two postnatal weeks, equivalent to the third trimester in human fetuses. The ethanol-induced apoptosis is mitochondria-dependent, involving Bax and caspase-3 activation. Such apoptotic pathways are often mediated by sphingolipids, a class of bioactive lipids ubiquitously present in eukaryotic cellular membranes. While the central role of lipids in ethanol liver toxicity is well recognized, the involvement of sphingolipids in ethanol neurotoxicity is less explored despite mounting evidence of their importance in neuronal apoptosis. Nevertheless, recent studies indicate that ethanol-induced neuronal apoptosis in animal models of FASD is mediated or regulated by cellular sphingolipids, including via the pro-apoptotic action of ceramide and through the neuroprotective action of GM1 ganglioside. Such sphingolipid involvement in ethanol neurotoxicity in the developing brain may provide unique targets for therapeutic applications against FASD. Here we summarize findings describing the involvement of sphingolipids in ethanol-induced apoptosis and discuss the possibility that the combined action of various sphingolipids in mitochondria may control neuronal cell fate.
    Brain sciences. 06/2013; 3(2):670-703.

Full-text (2 Sources)

Download
28 Downloads
Available from
May 21, 2014