Article

Disturbance of emotion processing in frontotemporal dementia: a synthesis of cognitive and neuroimaging findings.

Neuroscience Research Australia, Randwick, NSW, Australia.
Neuropsychology Review (Impact Factor: 5.4). 05/2012; 22(3):280-97. DOI: 10.1007/s11065-012-9201-6
Source: PubMed

ABSTRACT Accurate processing of emotional information is a critical component of appropriate social interactions and interpersonal relationships. Disturbance of emotion processing is present in frontotemporal dementia (FTD) and is a clinical feature in two of the three subtypes: behavioural-variant FTD and semantic dementia. Emotion processing in progressive nonfluent aphasia, the third FTD subtype, is thought to be mostly preserved, although current evidence is scant. This paper reviews the literature on emotion recognition, reactivity and expression in FTD subtypes, although most studies focus on emotion recognition. The relationship between patterns of emotion processing deficits and patterns of neural atrophy are considered, by integrating evidence from recent neuroimaging studies. The review findings are discussed in the context of three contemporary theories of emotion processing: the limbic system model, the right hemisphere model and a multimodal system of emotion. Results across subtypes of FTD are most consistent with the multimodal system model, and support the presence of somewhat dissociable neural correlates for basic emotions, with strongest evidence for the emotions anger and sadness. Poor emotion processing is evident in all three subtypes, although deficits are more widespread than what would be predicted based on studies in healthy cohorts. Studies that include behavioural and imaging data are limited. Future investigations combining these approaches will help improve the understanding of the neural network underlying emotion processing. Presently, longitudinal investigations of emotion processing in FTD are lacking, and studies investigating emotion processing over time are critical to understand the clinical manifestations of disease progression in FTD.

2 Followers
 · 
139 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Behavioural variant frontotemporal dementia (bvFTD) is a debilitating neurodegenerative disorder characterized by frontal and temporal lobe atrophy primarily affecting social cognition and emotion, including loss of empathy. Many consider empathy to be a multidimensional construct, including cognitive empathy (the ability to adopt and understand another's perspective) and emotional empathy (the capacity to share another's emotional experience). Cognitive and emotional empathy deficits have been associated with bvFTD; however, little is known regarding the performance of patients with bvFTD on behavioural measures of emotional empathy, and whether empathic responses differ for negative versus positive stimuli.
    Neuropsychologia 11/2014; 67. DOI:10.1016/j.neuropsychologia.2014.11.022 · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to perceive, learn and recognise faces is a complex ability, which is key to successful social interactions. This ability is proposed to be coordinated by neural regions in the occipital and temporal lobes, specialised for face perception and memory. While previous studies have suggested that memory for faces is compromised in some dementia syndromes, it remains unclear whether this simply reflects more generalised memory deficits. Here, we examined basic face perception (Identity-Matching), face recognition (Cambridge Face Memory Task) and object recognition (Cambridge Car Memory Task) in 11 semantic dementia (SD) patients (8 left-lateralised, 3 right-lateralised) and 13 behavioural-variant frontotemporal dementia (bvFTD) patients, compared with 11 controls. On the Identity-Matching task, bvFTD were impaired compared to controls, with a similar trend observed in the SD group. Importantly, both bvFTD and SD also demonstrated impaired face recognition. In contrast, only bvFTD showed impaired object recognition, with SD performing within normal limits on this task. Voxel-based morphometry analyses revealed that Identity-Matching and face recognition were associated with partly dissociable regions including the fusiform cortex and anterior temporal lobe. Object-memory was associated with thalamic integrity in the bvFTD group only. These results reveal that face perception and face memory deficits are common in bvFTD and SD, and have been previously underestimated. These deficits are due to neurodegeneration of key regions within the'core' and'extended' face processing system, providing convergent evidence of the neural regions supporting face perception. From a clinical perspective, impaired ability to recognise faces is common in bvFTD and SD and therefore strategies to improve face perception and memory may be beneficial for these patients. Copyright © 2015. Published by Elsevier Ltd.
    Neuropsychologia 03/2015; 71. DOI:10.1016/j.neuropsychologia.2015.03.020 · 3.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent developments in the cognitive neuroscience of music suggest that a further review of the topic of amusia is timely. In this chapter, we first consider previous taxonomies of amusia and propose a fresh framework for understanding the amusias, essentially as disorders of cognitive information processing. We critically review current cognitive and neuroanatomic findings in the published literature on amusia. We assess the extent to which the clinical and neuropsychologic evidence in amusia can be reconciled; both with the information-processing framework we propose, and with the picture of the brain organization of music and language processing emerging from cognitive neuroscience and functional neuroimaging studies. The balance of evidence suggests that the amusias can be understood as disorders of musical object cognition targeting separable levels of an information-processing hierarchy and underpinned by specific brain network dysfunction. The neuroanatomic associations of the amusias show substantial overlap with brain networks that process speech; however, this convergence leaves scope for separable brain mechanisms based on altered connectivity and dynamics across culprit networks. The study of the amusias contributes to an increasingly complex picture of the musical brain that transcends any simple dichotomy between music and speech or other complex sounds. © 2015 Elsevier B.V. All rights reserved.
    Handbook of Clinical Neurology 129C:607-631. DOI:10.1016/B978-0-444-62630-1.00034-2