Article

Fluorescent Nanoprobes Dedicated to in Vivo Imaging: From Preclinical Validations to Clinical Translation

Département MicroTechnologies Pour la Biologie et la Santé CEA-LETI, Minatec, 17 Rue des Martyrs, 38045 Grenoble Cedex, France.
Molecules (Impact Factor: 2.42). 12/2012; 17(5):5564-91. DOI: 10.3390/molecules17055564
Source: PubMed

ABSTRACT With the fast development, in the last ten years, of a large choice of set-ups dedicated to routine in vivo measurements in rodents, fluorescence imaging techniques are becoming essential tools in preclinical studies. Human clinical uses for diagnostic and image-guided surgery are also emerging. In comparison to low-molecular weight organic dyes, the use of fluorescent nanoprobes can improve both the signal sensitivity (better in vivo optical properties) and the fluorescence biodistribution (passive "nano" uptake in tumours for instance). A wide range of fluorescent nanoprobes have been designed and tested in preclinical studies for the last few years. They will be reviewed and discussed considering the obstacles that need to be overcome for their potential everyday use in clinics. The conjugation of fluorescence imaging with the benefits of nanotechnology should open the way to new medical applications in the near future.

Download full-text

Full-text

Available from: Isabelle Texier, Mar 27, 2014
1 Follower
 · 
166 Views
  • Source
    • "To track the nanoparticles in vivo, near-infrared fluorescence (NIRF) optical imaging in the range of 650–900 nm [21] is an appropriate technology due to its low autofluorescence and the high penetration depth of the NIR light. Interestingly, the use of nanoparticles as carrier systems for NIRF-emitting dyes was shown to improve their admission, prolong their circulation time in the body, intensify their fluorescence and improve their photostability [22] [23] [24]. Among the different nanoparticle varieties currently available, calcium phosphate nanoparticles are very attractive [25] [26] [27] [28] [29] [30] [31] as they exhibit high biocompatibility, small size, low toxicity, high biodegradability, easy preparation and suitability for functionalization [32]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Photodynamic therapy (PDT) of tumors causes skin photosensitivity as a result of unspecific accumulation behavior of the photosensitizers. PDT of tumors was improved by calcium phosphate nanoparticles conjugated with 1) mTHPC as photosensitizer, 2) the RGDfK-peptide for favored tumor targeting, and 3) the fluorescent dye molecule DY682-NHS for enabling near-infrared fluorescence (NIRF) optical imaging in vivo. The nanoparticles were characterized concerning size, spectroscopic properties, and uptake into CAL-27 cells. The nanoparticles had a hydrodynamic diameter of approximately 200 nm and a zeta potential of around +22 mV. Their biodistribution at 24 h after injection was investigated via NIRF optical imaging. After treating tumor-bearing CAL-27 mice with nanoparticle-PDT, the therapeutic efficacy was assessed by a fluorescent DY-734-annexin V probe at 2 days and 2 weeks after treatment to detect apoptosis. Additionally, the contrast agent IRDye(®) 800CW RGD was used to assess tumor vascularization (up to 4 weeks after PDT). After nanoparticle-PDT in mice, apoptosis in the tumor was detected after 2 days. A decrease of tumor vascularization as well as of tumor volume was detected in the next days after PDT. Calcium phosphate nanoparticles can be used as multifunctional tools for NIRF optical imaging, PDT, and tumor targeting as they exhibited a high therapeutic efficacy, were capable of inducing apoptosis and destroying tumor vascularization. Copyright © 2014. Published by Elsevier Ltd.
    Acta Biomaterialia 12/2014; 14. DOI:10.1016/j.actbio.2014.12.009 · 5.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fluorescence, the absorption and re-emission of photons with longer wavelengths, is one of those amazing phenomena of Nature. Its discovery and utilization had, and still has, a major impact on biological and biomedical research, since it enables researchers not just to visualize normal physiological processes with high temporal and spatial resolution, to detect multiple signals concomitantly, to track single molecules in vivo, to replace radioactive assays when possible, but also to shed light on many pathobiological processes underpinning disease states, which would otherwise not be possible. Compounds that exhibit fluorescence are commonly called fluorochromes or fluorophores and one of these fluorescent molecules in particular has significantly enabled life science research to gain new insights in virtually all its sub-disciplines: Green Fluorescent Protein. Because fluorescent proteins are synthesized in vivo, integration of fluorescent detection methods into the biological system via genetic techniques now became feasible. Currently fluorescent proteins are available that virtually span the whole electromagnetic spectrum. Concomitantly, fluorescence imaging techniques were developed, and often progress in one field fueled innovation in the other. Impressively, the properties of fluorescence were utilized to develop new assays and imaging modalities, ranging from energy transfer to image molecular interactions to imaging beyond the diffraction limit with super-resolution microscopy. Here, an overview is provided of recent developments in both fluorescence imaging and fluorochrome engineering, which together constitute the “fluorescence toolbox” in life science research.
    Molecules 12/2012; 17(12):14067-90. DOI:10.3390/molecules171214067 · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanomedicines have gained more and more attention in cancer therapy thanks to their ability to enhance the tumour accumulation and the intracellular uptake of drugs while reducing their inactivation and toxicity. In parallel, nanocarriers have been successfully employed as diagnostic tools increasing imaging resolution holding great promises both in preclinical research and in clinical settings. Lipid-based nanocarriers are a class of biocompatible and biodegradable vehicles that provide advanced delivery of therapeutic and imaging agents, improving pharmacokinetic profile and safety. One of most promising engineering challenges is the design of innovative and versatile multifunctional targeted nanotechnologies for cancer treatment and diagnosis. This review aims to highlight rational approaches to design multifunctional non liposomal lipid-based nanocarriers providing an update of literature in this field.
    Journal of Nanobiotechnology 12/2013; 11 Suppl 1(Suppl 1):S6. DOI:10.1186/1477-3155-11-S1-S6 · 4.08 Impact Factor
Show more