MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB.

Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA.
Autophagy (Impact Factor: 11.42). 06/2012; 8(6):903-14. DOI: 10.4161/auto.19653
Source: PubMed

ABSTRACT The mammalian target of rapamycin (MTOR) protein kinase complex is a key component of a pathway that regulates cell growth and proliferation in response to energy levels, hypoxia, nutrients and insulin. Inhibition of MTORC1 strongly induces autophagy by regulating the activity of the ULK protein kinase complex that is required for the formation of autophagosomes. However, the participation of MTORC1 in the expression of autophagy genes has not been characterized. Here we show that MTORC1 regulates nuclear localization and activity of the transcription factor EB (TFEB), a member of the bHLH leucine-zipper family of transcription factors that drives expression of autophagy and lysosomal genes. Under normal nutrient conditions, TFEB is phosphorylated in Ser211 in an MTORC1-dependent manner. This phosphorylation promotes association of TFEB with members of the YWHA (14-3-3) family of proteins and retention of the transcription factor in the cytosol. Pharmacological or genetic inhibition of MTORC1 causes dissociation of the TFEB/YWHA complex and rapid transport of TFEB to the nucleus where it increases transcription of multiple genes implicated in autophagy and lysosomal function. Active TFEB also associates with late endosomal/lysosomal membranes through interaction with the LAMTOR/RRAG/MTORC1 complex. Our results unveil a novel role for MTORC1 in the maintenance of cellular homeostasis by regulating autophagy at the transcriptional level.

  • Source
    Israel C. Nnah, Khoosheh Khayati, Radek Dobrowolski
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the last few years extensive studies have linked the activity of mTORC1 to lysosomal function. These observations propose an intriguing integration of cellular catabolism, sustained by lysosomes, with anabolic processes, largely controlled by mTORC1. Interestingly, lysosomal function directly affects mTORC1 activity and is regulated by ZKSCAN3 and TFEB, two transcription factors and substrates of mTORC1. Thus, the lysosomal mTOR signaling complex represents a hub of cellular energy metabolism, and its dysregulation may lead to a number of human diseases. Here, we discuss the recent developments and highlight the open questions in this growing field.
    Journal of Cell Death 01/2015; 1(1).
  • Source
    Frontiers in Cell and Developmental Biology 09/2014; 2:52.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a lysosomal mediated degradation activity providing an essential mechanism for recycling cellular constituents, and clearance of excess or damaged lipids, proteins and organelles. Autophagy involves more than 30 proteins and is regulated by nutrient availability, and various stress sensing signaling pathways. This article provides an overview of the mechanisms and regulation of autophagy, its role in health and diseases, and methods for its measurement. Hopefully this teaching review together with the graphic illustrations will be helpful for instructors teaching graduate students who are interested in grasping the concepts and major research areas and introducing recent developments in the field.
    Redox Biology. 01/2015; 28.


Available from