High Throughput Screening for Small Molecule Enhancers of the Interferon Signaling Pathway to Drive Next-Generation Antiviral Drug Discovery

Lady Davis Institute for Medical Research, Canada
PLoS ONE (Impact Factor: 3.53). 05/2012; 7(5):e36594. DOI: 10.1371/journal.pone.0036594
Source: PubMed

ABSTRACT Most of current strategies for antiviral therapeutics target the virus specifically and directly, but an alternative approach to drug discovery might be to enhance the immune response to a broad range of viruses. Based on clinical observation in humans and successful genetic strategies in experimental models, we reasoned that an improved interferon (IFN) signaling system might better protect against viral infection. Here we aimed to identify small molecular weight compounds that might mimic this beneficial effect and improve antiviral defense. Accordingly, we developed a cell-based high-throughput screening (HTS) assay to identify small molecules that enhance the IFN signaling pathway components. The assay is based on a phenotypic screen for increased IFN-stimulated response element (ISRE) activity in a fully automated and robust format (Z'>0.7). Application of this assay system to a library of 2240 compounds (including 2160 already approved or approvable drugs) led to the identification of 64 compounds with significant ISRE activity. From these, we chose the anthracycline antibiotic, idarubicin, for further validation and mechanism based on activity in the sub-µM range. We found that idarubicin action to increase ISRE activity was manifest by other members of this drug class and was independent of cytotoxic or topoisomerase inhibitory effects as well as endogenous IFN signaling or production. We also observed that this compound conferred a consequent increase in IFN-stimulated gene (ISG) expression and a significant antiviral effect using a similar dose-range in a cell-culture system inoculated with encephalomyocarditis virus (EMCV). The antiviral effect was also found at compound concentrations below the ones observed for cytotoxicity. Taken together, our results provide proof of concept for using activators of components of the IFN signaling pathway to improve IFN efficacy and antiviral immune defense as well as a validated HTS approach to identify small molecules that might achieve this therapeutic benefit.


Available from: Anand Champak Patel, Jun 15, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Some investigators find a deficiency in IFN production from airway epithelial cells infected with human rhinovirus in asthma, but whether this abnormality occurs with other respiratory viruses is uncertain. Objective To assess the effect of influenza A virus (IAV) and respiratory syncytial virus (RSV) infection on IFN production and viral level in human bronchial epithelial cells (hBECs) from subjects with and without asthma. Methods Primary-culture hBECs from subjects with mild to severe asthma (n = 11) and controls without asthma (hBECs; n = 7) were infected with live or ultraviolet-inactivated IAV (WS/33 strain), RSV (Long strain), or RSV (A/2001/2-20 strain) with multiplicity of infection 0.01 to 1. Levels of virus along with IFN-β and IFN-λ and IFN-stimulated gene expression (tracked by 2′-5′-oligoadenylate synthetase 1 and myxovirus (influenza virus) resistance 1 mRNA) were determined up to 72 hours postinoculation. Results After IAV infection, viral levels were increased 2-fold in hBECs from asthmatic subjects compared with nonasthmatic control subjects (P < .05) and this increase occurred in concert with increased IFN-λ1 levels and no significant difference in IFNB1, 2′-5′-oligoadenylate synthetase 1, or myxovirus (influenza virus) resistance 1mRNA levels. After RSV infections, viral levels were not significantly increased in hBECs from asthmatic versus nonasthmatic subjects and the only significant difference between groups was a decrease in IFN-λ levels (P < .05) that correlated with a decrease in viral titer. All these differences were found only at isolated time points and were not sustained throughout the 72-hour infection period. Conclusions The results indicate that IAV and RSV control and IFN response to these viruses in airway epithelial cells is remarkably similar between subjects with and without asthma.
    Journal of Allergy and Clinical Immunology 09/2014; 134(6). DOI:10.1016/j.jaci.2014.07.013 · 11.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory infection is a common feature of the major human airway diseases, such as asthma and chronic obstructive pulmonary disease, but the precise link between acute infection and chronic lung disease is still undefined. In a mouse model of this process, parainfluenza virus infection is followed by long-term induction of IL-33 expression and release and in turn innate immune cell generation of IL-13 and consequent airway disease signified by excess mucus formation. IL-33 induction was traceable to a subset of secretoglobin-positive airway epithelial cells linked to progenitor/stem cell function. In corresponding studies of humans with chronic obstructive pulmonary disease, an increase in IL-33 production was also detected in concert with up-regulation of IL-13 and airway mucus formation. In this case, increased IL-33 production was localized to a subset of airway basal cells that maintain an endogenous capacity for increased pluripotency and ATP-regulated release of IL-33 even ex vivo. The results provide evidence of a sustainable epithelial cell population that may be activated by environmental danger signals to release IL-33 and thereby lead to IL-13-dependent disease. The progenitor nature of this IL-33-expressing ATP-responsive cell population could explain an acquired susceptibility to chronic airway disease. The findings may therefore provide a new paradigm to explain the role of viral infection and the innate immune system in chronic lung disease based on the influence of long-term epithelial progenitor cells programmed for excess IL-33 production. Further studies are needed to address the basis for this type of postviral reprogramming and the means to correct it and thereby restore airway mucosal immune function to normal.
    12/2014; 11(Supplement 5):S287-S291. DOI:10.1513/AnnalsATS.201402-056AW
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The epithelium of the pulmonary airway is specially differentiated to provide defense against environmental insults, but also subject to dysregulated differentiation that results in lung disease. The current paradigm for airway epithelial differentiation is a one-step program whereby a p63+ basal epithelial progenitor cell generates a ciliated or secretory cell lineage, but the cue for this transition and whether there are intermediate steps is poorly defined. Here we identify transcription factor Myb as a key regulator that permits early multilineage differentiation of airway epithelial cells. Myb+ cells were identified as p63– and therefore distinct from basal progenitor cells, but were still negative for markers of differentiation. Myb RNAi treatment of primary-culture airway epithelial cells and Myb gene deletion in mice resulted in a p63– population with failed maturation of Foxj1+ ciliated cells, as well as Scbg1a1+ and Muc5ac+ secretory cells. Consistent with these findings, analysis of whole genome expression of Myb-deficient cells identified Myb-dependent programs for ciliated and secretory cell differentiation. Myb+ cells were rare in human airways but were increased in regions of ciliated cells and mucous cell hyperplasia in samples from subjects with chronic obstructive pulmonary disease. Together, the results show that a p63– Myb+ population of airway epithelial cells represents a distinct intermediate stage of differentiation that is required under normal conditions and may be heightened in airway disease. Stem Cells 2014
    Stem Cells 12/2014; 32(12). DOI:10.1002/stem.1814 · 7.70 Impact Factor