Article

Inhibition of Adult Neurogenesis by Inducible and Targeted Deletion of ERK5 Mitogen-Activated Protein Kinase Specifically in Adult Neurogenic Regions Impairs Contextual Fear Extinction and Remote Fear Memory

Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 05/2012; 32(19):6444-55. DOI: 10.1523/JNEUROSCI.6076-11.2012
Source: PubMed

ABSTRACT Although there is evidence suggesting that adult neurogenesis may contribute to hippocampus-dependent memory, signaling mechanisms responsible for adult hippocampal neurogenesis are not well characterized. Here we report that ERK5 mitogen-activated protein kinase is specifically expressed in the neurogenic regions of the adult mouse brain. The inducible and conditional knock-out (icKO) of erk5 specifically in neural progenitors of the adult mouse brain attenuated adult hippocampal neurogenesis. It also caused deficits in several forms of hippocampus-dependent memory, including contextual fear conditioning generated by a weak footshock. The ERK5 icKO mice were also deficient in contextual fear extinction and reversal of Morris water maze spatial learning and memory, suggesting that adult neurogenesis plays an important role in hippocampus-dependent learning flexibility. Furthermore, our data suggest a critical role for ERK5-mediated adult neurogenesis in pattern separation, a form of dentate gyrus-dependent spatial learning and memory. Moreover, ERK5 icKO mice have no memory 21 d after training in the passive avoidance test, suggesting a pivotal role for adult hippocampal neurogenesis in the expression of remote memory. Together, our results implicate ERK5 as a novel signaling molecule regulating adult neurogenesis and provide strong evidence that adult neurogenesis is critical for several forms of hippocampus-dependent memory formation, including fear extinction, and for the expression of remote memory.

Download full-text

Full-text

Available from: Chay Kuo, Mar 22, 2014
0 Followers
 · 
222 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD44 is a transmembrane receptor for the glycosaminoglycan hyaluronan, a component of the extracellular matrix. CD44 is expressed by neural stem/progenitor cells, astrocytes, and some neurons but its function in the central nervous system is unknown. To determine the role of CD44 in brain function, we behaviorally analyzed CD44-null (KO) and wild-type (WT) mice. KO mice showed increased activity levels in the light-dark test and a trend towards increased activity in the open field. In addition, KO mice showed impaired hippocampus-dependent spatial memory retention in the probe trial following the first hidden-platform training day in the Morris water maze: WT mice showed spatial memory retention and spent more time in the target quadrant than any other quadrant, while KO mice did not. Although there were no genotype differences in swim speeds during the water maze training sessions with the visible or hidden platform, sensorimotor impairments were seen in other behavioral tests. In the inclined screen and balance beam tests, KO mice moved less than WT mice. In the wire hang test, KO mice also fell off of the wire faster than WT mice. In contrast, there was no genotype difference when emotional learning and memory were assessed in the passive avoidance test. These data support an important role for CD44 in locomotor and sensorimotor functions, and in spatial memory retention.
    Behavioural Brain Research 09/2014; 275. DOI:10.1016/j.bbr.2014.09.010 · 3.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the adult mammalian brain, more than 250 protein kinases are expressed, but only a few of these kinases are currently known to enable learning and memory. Based on this information it appears that learning and memory-related kinases either impact on synaptic transmission by altering ion channel properties or ion channel density, or regulate gene expression and protein synthesis causing structural changes at existing synapses as well as synaptogenesis. Here, we review the roles of these kinases in short-term memory formation, memory consolidation, memory storage, retrieval, reconsolidation, and extinction. Specifically, we discuss the roles of calcium/calmodulin-dependent kinase II (CaMKII), the calcium/calmodulin kinase cascade, extracellular signal regulated kinase 1 and 2 (ERK1/2), cAMP-dependent protein kinase A (PKA), cGMP-dependent protein kinase G (PKG), the phosphatidylinositol 3-kinase (PI3K) pathway, and protein kinase M ζ (PKMζ). Although these kinases are important for learning and memory processes, much remains to be learned as to how they act. Therefore, it will be important to identify and characterize the critical phosphorylation substrates so that a sophisticated understanding of learning and memory processes will be achieved. This will also allow for a systematic analysis of dysfunctional kinase activity in mental disorders.
    Learning & memory (Cold Spring Harbor, N.Y.) 09/2013; 20(10):540-52. DOI:10.1101/lm.028449.112 · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pharmacological and behavior interventions for inhibiting fear and anxiety are important in the treatment of different types of anxiety disorder. Fear extinction, as a novel form of associative learning, is most extensively studied models to understand the neural mechanisms of fear-related and anxiety disorders. One of possible mechanisms of neural plasticity in extinction learning may depend on activation of NMDA receptors in the amygdale; however, the role played by the hippocampus in extinction remains largely unclear. In the present study, using a fear conditioning paradigm, we repeatedly microinfused D-Cycloserine, a partial agonist of NMDA receptor, into the hippocampus and investigated the effects of repeated infusions of DCS on extinction behavior and protein levels of NMDA receptor subunit NR2B. We also examined the effects of DCS on neurogenesis in adult rat hippocampus. Our results showed that the administration of DCS facilitated the acquisition and retrieval of extinction memory, and enhanced the expression of NR2B protein in the dentate gyrus, CA1 and CA3 of the hippocampus. We also found that repeated micorinfusions of DCS increased proliferation of newly born cells in the hippocampus. These findings suggest that neural plasticity mediated by NMDA receptors in the hippocampus is involved in the enhancement of acquisition and retrieval of extinction memory.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 03/2013; 44. DOI:10.1016/j.pnpbp.2013.02.017 · 4.03 Impact Factor