Detecting activity-evoked pH changes in human brain.

Department of Radiology, University of Iowa, Iowa City, IA 52242, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 05/2012; 109(21):8270-3. DOI: 10.1073/pnas.1205902109
Source: PubMed

ABSTRACT Localized pH changes have been suggested to occur in the brain during normal function. However, the existence of such pH changes has also been questioned. Lack of methods for noninvasively measuring pH with high spatial and temporal resolution has limited insight into this issue. Here we report that a magnetic resonance imaging (MRI) strategy, T(1) relaxation in the rotating frame (T(1)ρ), is sufficiently sensitive to detect widespread pH changes in the mouse and human brain evoked by systemically manipulating carbon dioxide or bicarbonate. Moreover, T(1)ρ detected a localized acidosis in the human visual cortex induced by a flashing checkerboard. Lactate measurements and pH-sensitive (31)P spectroscopy at the same site also identified a localized acidosis. Consistent with the established role for pH in blood flow recruitment, T(1)ρ correlated with blood oxygenation level-dependent contrast commonly used in functional MRI. However, T(1)ρ was not directly sensitive to blood oxygen content. These observations indicate that localized pH fluctuations occur in the human brain during normal function. Furthermore, they suggest a unique functional imaging strategy based on pH that is independent of traditional functional MRI contrast mechanisms.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rod tetrameric arrestin 1 (tet-ARR1), stored in the outer nuclear layer/inner segments in the dark, modulates photoreceptor synaptic activity; light exposure stimulates a reduction via translocation to the outer segments for terminating G-protein coupled phototransduction signaling. Here, we test the hypothesis that intraretinal spin-lattice relaxation rate in the rotating frame (1/T1ρ), an endogenous MRI contrast mechanism, has high potential for evaluating rod tet-ARR1 and its reduction via translocation. Dark- and light-exposed mice (null for the ARR1 gene, overexpressing ARR1, diabetic, or wild type with or without treatment with Mn(2+), a calcium channel probe) were studied using 1/T1ρ MRI. Immunohistochemistry and single-cell recordings of the retinas were also performed. In wild-type mice with or without treatment with Mn(2+), 1/T1ρ of avascular outer retina (64% to 72% depth) was significantly (P < 0.05) greater in the dark than in the light; a significant (P < 0.05) but opposite pattern was noted in the inner retina (<50% depth). Light-evoked outer retina Δ1/T1ρ was absent in ARR1-null mice and supernormal in overexpressing mice. In diabetic mice, the outer retinal Δ1/T1ρ pattern suggested normal dark-to-light tet-ARR1 translocation and chromophore content, conclusions confirmed ex vivo. Light-stimulated Δ1/T1ρ in inner retina was linked to changes in blood volume. Our data support 1/T1ρ MRI for noninvasively assessing rod tet-ARR1 and its reduction via protein translocation, which can be combined with other metrics of retinal function in vivo.-Berkowitz, B. A., Gorgis, J., Patel, A., Baameur, F., Gurevich, V. V., Craft, C. M., Kefalov, V. J., Roberts, R. Development of an MRI biomarker sensitive to tetrameric visual arrestin 1 and its reduction via light-evoked translocation in vivo.
    The FASEB Journal 10/2014; 29(2). DOI:10.1096/fj.14-254953 · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deuterium-depleted water (DDW) is a water which has a 6-7 fold less concentration of the naturally occurring deuterium (20-25ppm vs. 150ppm). While administrated for a longer period, it may reduce the concentration of deuterium throughout the body, thus activating cellular mechanisms which are depending on protons (channels, pumps, enzyme proteins). The aim of the present work was to study, for the first time in our knowledge, the possible influence of deuterium-depleted water (DDW) chronic administration in normal Wistar rats, as compared to a control group which received distilled water, on spatial working memory and the locomotor activity (as studied through Y-maze) or both short term and long-term spatial memory (assed in radial 8 arms-maze task). Our results presented here showed no significant modifications in terms of spatial working memory (assessed through spontaneous alternation percentage) and locomotor activity (expressed through the number of arm entries) in Y-maze, as a result of DDW ingestion. Also, no significant differences between the DDW and control group were found in terms of the number of working memory errors in the eight-arm radial maze, as a parameter of short term memory. Still, we observed a significant decrease for the number of reference memory errors in the DDW rats. In this way, we could speculate that the administration of DDW may generate an improvement of the reference memory, as an index of long-term memory. Thus, we can reach the conclusion that the change between the deuterium/hydrogen balance may have important consequences for the mechanisms that govern long-term memory, as showed here especially in the behavioral parameters from the eight-arm radial maze task.
    Neuroscience Letters 09/2014; DOI:10.1016/j.neulet.2014.09.037 · 2.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Voltammetric recording of dopamine (DA) with fast-scan cyclic voltammetry (FSCV) on carbon fiber microelectrodes have been widely used because of its high sensitivity to dopamine. However, since an electric double layer on carbon fiber surface in physiological ionic solution behaves as a capacitor, fast voltage manipulation in FSCV induces large capacitive current. The faradic current from oxidation/reduction of target chemicals needs to be extracted from this large background current. It is known that ionic shifts, including H+, influence this capacitance, and pH shift can cause confounding influences on the FSCV recordings within a wide range of voltage. Besides FSCV with a triangular waveform, we have been using rectangular pulse voltammetry (RPV) for dopamine detection in the brain. In this method, the onset of a single pulse causes a large capacitive current, but unlike FSCV, the capacitive current is restricted to a narrow temporal window of just after pulse onset (< 5ms). In contrast, the peak of faradic current from dopamine oxidation occurs after more than a few ms of delay. Taking advantage of the temporal difference, we show that RPV could distinguish dopamine from pH shifts clearly and easily. In addition, the early onset current was useful to evaluate pH shifts. The narrow voltage window of our RPV pulse allowed a clear differentiation of dopamine and 5-HT as we have shown before. Additional recording with RPV, alongside FSCV, would improve identification of chemicals such as dopamine, pH and 5-HT.
    Analytical Chemistry 08/2014; 86(17). DOI:10.1021/ac500706m · 5.83 Impact Factor

Full-text (2 Sources)

Available from
Jun 10, 2014