Article

Bisphenol A alters the development of the rhesus monkey mammary gland.

Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 05/2012; 109(21):8190-5. DOI: 10.1073/pnas.1120488109
Source: PubMed

ABSTRACT The xenoestrogen bisphenol A (BPA) used in the manufacturing of various plastics and resins for food packaging and consumer products has been shown to produce numerous endocrine and developmental effects in rodents. Exposure to low doses of BPA during fetal mammary gland development resulted in significant alterations in the gland's morphology that varied from subtle ones observed during the exposure period to precancerous and cancerous lesions manifested in adulthood. This study assessed the effects of BPA on fetal mammary gland development in nonhuman primates. Pregnant rhesus monkeys were fed 400 μg of BPA per kg of body weight daily from gestational day 100 to term, which resulted in 0.68 ± 0.312 ng of unconjugated BPA per mL of maternal serum, a level comparable to that found in humans. At birth, the mammary glands of female offspring were removed for morphological analysis. Morphological parameters similar to those shown to be affected in rodents exposed prenatally to BPA were measured in whole-mounted glands; estrogen receptor (ER) α and β expression were assessed in paraffin sections. Student's t tests for equality of means were used to assess differences between exposed and unexposed groups. The density of mammary buds was significantly increased in BPA-exposed monkeys, and the overall development of their mammary gland was more advanced compared with unexposed monkeys. No significant differences were observed in ER expression. Altogether, gestational exposure to the estrogen-mimic BPA altered the developing mammary glands of female nonhuman primates in a comparable manner to that observed in rodents.

3 Bookmarks
 · 
547 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The heritable component of breast cancer accounts for only a small proportion of total incidences. Environmental and lifestyle factors are therefore considered one of the major influencing components increasing breast cancer risk. Endocrine disrupting chemicals (EDCs) are ubiquitous in the environment. The estrogenic property of EDCs has thus seen many associations between ongoing exposures and the development of endocrine-related diseases, including breast cancer. The environment consists of a heterogenous population of EDCs and despite many identified modes of action, including that of altering the epigenome, drawing definitive correlations to breast cancer has been a point of much discussion. In this review we describe in detail well characterised EDCs and their actions in the environment; their ability to disrupt mammary gland formation in animal and human experimental models; and their associations with exposure and breast cancer risk. We also highlight the susceptibility of early-life exposure of each EDC to mediate epigenetic alterations, and where possible describe how these epigenome changes influence breast cancer risk.
    Endocrine Related Cancer 02/2014; · 5.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bisphenol A (BPA) exposure results in numerous developmental and functional abnormalities in reproductive organs in rodent models, but limited data are available regarding BPA effects in the primate uterus. To determine if maternal oral BPA exposure affects fetal uterine development in a non-human primate model, pregnant rhesus macaques carrying female fetuses were exposed orally to 400 µg/kg BPA or vehicle control daily from gestation day (GD) 50-100 or GD100-165. Fetal uteri were collected at the completion of treatment (GD100 or GD165); tissue histology, cell proliferation, and expression of estrogen receptor alpha (ERα) and progesterone receptor (PR) were compared to that of controls. Gene expression analysis was conducted using rhesus macaque microarrays. There were no significant differences in histology or in the percentage of cells expressing the proliferation marker Ki-67, ERα, or PR in BPA-exposed uteri compared to controls at GD100 or GD165. Minimal differences in gene expression were observed between BPA-exposed and control GD100 uteri. However, at GD165, BPA-exposed uteri had significant differences in gene expression compared to controls. Several of the altered genes, including HOXA13, WNT4, and WNT5A, are critical for reproductive organ development and/or adult function. We conclude that second or third trimester BPA exposure does not significantly affect fetal uterus development based on morphological, proliferation, and steroid hormone receptor assessments. However, differences in expression of key developmental genes after third trimester exposure suggest that BPA could alter transcriptional signals influencing uterine function later in life.
    PLoS ONE 01/2014; 9(1):e85894. · 3.73 Impact Factor
  • Clinical Oral Investigations 03/2014; 18(2):347-9. · 2.20 Impact Factor