Stem cell-based photodynamic therapy

Kansas State University, Anatomy & Physiology, Manhattan, KS 66506, USA.
Photochemical and Photobiological Sciences (Impact Factor: 2.27). 05/2012; 11(7):1251-8. DOI: 10.1039/c2pp05417e
Source: PubMed


We have transfected murine neural stem cells (NSCs) and rat umbilical cord matrix-derived stem cells (RUCMSCs) with a plasmid expressing gaussia luciferase (gLuc). These cells are engineered to secrete the luciferase. We have used gLuc containing supernatant from culturing the NSCs to perform in vitro photodynamic therapy of murine melanoma cells (B16F10), and RUCMSCs to perform in vivo PDT of lung melanomas in C57BL/6 mice. The treatment system was comprised of aminolevulic acid as a prodrug for the synthesis of the photosensitizer protoporphyrin IX, gaussia luciferase, and its' substrate coelenterazine. A significant reduction of the number of live melanoma cells in vitro and a borderline significant retardation of tumour growth in vivo was observed after coelenterazine-mediated PDT.

1 Follower
18 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polymorphonuclear neutrophils (PMNs) are the most abundant circulating blood leukocytes. They are part of the innate immune system and provide a first line of defense by migrating toward areas of inflammation in response to chemical signals released from the site. Some solid tumors, such as breast cancer, also cause recruitment and activation of PMNs and release of myeloperoxidase. In this study, we demonstrate that administration of luminol to mice that have been transplanted with 4T1 mammary tumor cells permits the detection of myeloperoxidase activity, and consequently, the location of the tumor. Luminol allowed detection of activated PMNs only two days after cancer cell transplantation, even though tumors were not yet palpable. In conclusion, luminol-bioluminescence imaging (BLI) can provide a pathway towards detection of solid tumors at an early stage in preclinical tumor models.
    Journal of photochemistry and photobiology. B, Biology 09/2013; 127C:223-228. DOI:10.1016/j.jphotobiol.2013.08.017 · 2.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Photodynamic therapy (PDT) is an elegant minimally invasive oncologic therapy. The clinical simplicity of photosensitizer (PS) drug application followed by appropriate illumination of target leading to the oxygen dependent tumor ablative Photodynamic Reaction (PDR) has gained this treatment worldwide acceptance. Yet the true potential of clinical PDT has not yet been achieved. This paper will review current mechanisms of action and treatment paradigms with critical commentary on means to potentially improve outcome using readily available clinical tools.
    Photodiagnosis and photodynamic therapy 12/2013; 10(4):331-341. DOI:10.1016/j.pdpdt.2013.03.011 · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Skin cancers are by far the most common malignancy of humans, particularly in the white population. The growing incidence of cutaneous malignancies has heralded the need for multiple treatment options. Although surgical modalities remain the mainstay of treatment, new research and fresh innovation are still required to reduce morbidity and mortality. Approaches for skin cancer may pass through new technological methods instead of new molecules. The first part of this paper provides a review of the state of the art regarding skin cancer disease as well as epidemiology data. Then, it describes the gold standards of the current recommended therapies worldwide and the actual needs of these patients. This is the first paper that highlights the novel and future therapeutic perspectives for the treatment of skin malignancies, new therapeutic agents and promising technological approaches, from nanotechnology to immunotherapy.
    Cancer Letters 02/2015; 357(1). DOI:10.1016/j.canlet.2014.11.001 · 5.62 Impact Factor