IbeB is involved in the invasion and pathogenicity of avian pathogenic Escherichia coli

Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
Veterinary Microbiology (Impact Factor: 2.73). 04/2012; 159(3-4):411-9. DOI: 10.1016/j.vetmic.2012.04.015
Source: PubMed

ABSTRACT The ibeB gene in neonatal meningitis Escherichia coli (NMEC) contribute to the penetration of human brain microvascular endothelial cells (HBMECs). However, whether IbeB plays a role in avian pathogenic E. coli (APEC) infection remains unclear. Thus, this study was conducted to investigate the distribution of the ibeB gene in Chinese APEC strains and examine whether IbeB is involved in APEC pathogenicity. The ibeB gene was found in all 100 detected E. coli isolates with over 97% sequence homology. These results indicated that ibeB is a conserved E. coli gene irrelevant of pathotypes. To determine the role of ibeB in APEC pathogenicity, an ibeB mutant of strain DE205B was constructed and characterized. The inactivation of ibeB resulted in reduced invasion capacity towards DF-1 cells and defective virulence in animal models as compared to the wild-type strain. Animal infection experiments revealed that loss of ibeB decreased APEC colonization and invasion capacity in brains and lungs. These virulence-related phenotypes were partially recoverable by genetic complementation. Reduced expression levels of invasion- and adhesion-associated genes in ibeB mutant could be major reasons as evidenced by reduced ibeA and ompA expression. These results indicate that IbeB is involved in APEC invasion and pathogenicity.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type VI secretion systems (T6SSs) contribute to pathogenicity in many pathogenic bacteria. Three distinguishable T6SS loci have been discovered in avian pathogenic Escherichia coli (APEC). The sequence of APEC T6SS2 locus is highly similar to the sequence of the newborn meningitis Escherichia coli (NMEC) RS218 T6SS locus, which might contribute to meningitis pathogenesis. However, little is known about the function of APEC T6SS2. We showed that the APEC T6SS2 component organelle trafficking protein (DotU) could elicit antibodies in infected ducks, suggesting that DotU might be involved in APEC pathogenicity. To investigate DotU in APEC pathogenesis, mutant and complemented strains were constructed and characterized. Inactivation of the APEC dotU gene attenuated virulence in ducks, diminished resistance to normal duck serum, and reduced survival in macrophage cells and ducks. Furthermore, deletion of the dotU gene abolished hemolysin-coregulated protein (Hcp) 1 secretion, leading to decreased interleukin (IL)-6 and IL-8 gene expression in HD-11 chicken macrophages. These functions were restored for the complementation strain. Our results demonstrated that DotU plays key roles in the APEC pathogenesis, Hcp1 secretion, and intracellular host response modulation.
    Frontiers in Microbiology 11/2014; 5:588. DOI:10.3389/fmicb.2014.00588 · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Systemic infections by avian pathogenic Escherichia coli (APEC) are economically devastating to poultry industries worldwide. IbeR, located on genomic island GimA, was shown to serve as an RpoS-like regulator in rpoS gene mutation neonatal meningitis E. coli (NMEC) RS218. However, the role of IbeR in pathogenicity of APEC carrying active RpoS has not yet been investigated. We showed that the APEC IbeR could elicit antibodies in infected ducks, suggesting that IbeR might be involved in APEC pathogenicity. To investigate the function of IbeR in APEC pathogenesis, mutant and complementation strains were constructed and characterized. Inactivation of ibeR led to attenuated virulence and reduced invasion capacity towards DF-1 cells, brains and cerebrospinal fluid (CSF) in vitro and in vivo. Bactericidal assays demonstrated that the mutant strain had impaired resistance to environmental stress and specific pathogen-free (SPF) chicken serum. These virulence-related phenotypes were restored by genetic complementation. Quantitative real-time reverse transcription PCR revealed that IbeR controlled expression of stress-resistance genes and virulence genes, which might led to the associated virulence phenotype.
    PLoS ONE 10(3):e0119698. DOI:10.1371/journal.pone.0119698 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Avian pathogenic E. coli and human extraintestinal pathogenic E. coli serotypes O1, O2 and O18 strains isolated from different hosts are generally located in phylogroup B2 and ST complex 95, and they share similar genetic characteristics and pathogenicity, with no or minimal host specificity. They are popular objects for the study of ExPEC genetic characteristics and pathogenesis in recent years. Here, we investigated the evolution and genetic blueprint of APEC pathotype by performing phylogenetic and comparative genome analysis of avian pathogenic E. coli strain IMT5155 (O2:K1:H5; ST complex 95, ST140) with other E. coli pathotypes. Phylogeny analyses indicated that IMT5155 has closest evolutionary relationship with APEC O1, IHE3034, and UTI89. Comparative genomic analysis showed that IMT5155 and APEC O1 shared significant genetic overlap/similarities with human ExPEC dominant O18:K1 strains (IHE3034 and UTI89). Furthermore, the unique PAI I5155 (GI-12) was identified and found to be conserved in APEC O2 serotype isolates. GI-7 and GI-16 encoding two typical T6SSs in IMT5155 might be useful markers for the identification of ExPEC dominant serotypes (O1, O2, and O18) strains. IMT5155 contained a ColV plasmid p1ColV5155, which defined the APEC pathotype. The distribution analysis of 10 sequenced ExPEC pan-genome virulence factors among 47 sequenced E. coli strains provided meaningful information for B2 APEC/ExPEC-specific virulence factors, including several adhesins, invasins, toxins, iron acquisition systems, and so on. The pathogenicity tests of IMT5155 and other APEC O1:K1 and O2:K1 serotypes strains (isolated in China) through four animal models showed that they were highly virulent for avian colisepticemia and able to cause septicemia and meningitis in neonatal rats, suggesting zoonotic potential of these APEC O1:K1 and O2:K1 isolates.
    PLoS ONE 11/2014; 9(11):e112048. DOI:10.1371/journal.pone.0112048 · 3.53 Impact Factor


Available from
Nov 23, 2014