Article

Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice.

Department of Physiology and Pharmacology, University of Rome "Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy.
Neuropharmacology (Impact Factor: 4.82). 04/2012; DOI: 10.1016/j.neuropharm.2012.04.013
Source: PubMed

ABSTRACT Human studies suggest that a variety of prenatal stressors are related to high risk for cognitive and behavioral abnormalities associated with psychiatric illness (Markham and Koenig, 2011). Recently, a downregulation in the expression of GABAergic genes (i.e., glutamic acid decarboxylase 67 and reelin) associated with DNA methyltransferase (DNMT) overexpression in GABAergic neurons has been regarded as a characteristic phenotypic component of the neuropathology of psychotic disorders (Guidotti et al., 2011). Here, we characterized mice exposed to prenatal restraint stress (PRS) in order to study neurochemical and behavioral abnormalities related to development of schizophrenia in the adult. Offspring born from non-stressed mothers (control mice) showed high levels of DNMT1 and 3a mRNA expression in the frontal cortex at birth, but these levels progressively decreased at post-natal days (PND) 7, 14, and 60. Offspring born from stressed mothers (PRS mice) showed increased levels of DNMTs compared to controls at all time-points studied including at birth and at PND 60. Using GAD67-GFP transgenic mice, we established that, in both control and PRS mice, high levels of DNMT1 and 3a were preferentially expressed in GABAergic neurons of frontal cortex and hippocampus. Importantly, the overexpression of DNMT in GABAergic neurons was associated with a decrease in reelin and GAD67 expression in PRS mice in early and adult life. PRS mice also showed an increased binding of DNMT1 and MeCP2, and an increase in 5-methylcytosine and 5-hydroxymethylcytosine in specific CpG-rich regions of the reelin and GAD67 promoters. Thus, the epigenetic changes in PRS mice are similar to changes observed in the post-mortem brains of psychiatric patients. Behaviorally, adult PRS mice showed hyperactivity and deficits in social interaction, prepulse inhibition, and fear conditioning that were corrected by administration of valproic acid (a histone deacetylase inhibitor) or clozapine (an atypical antipsychotic with DNA-demethylation activity). Taken together, these data show that prenatal stress in mice induces abnormalities in the DNA methylation network and in behaviors indicative of a schizophrenia-like phenotype. Thus, PRS mice may be a valid model for the investigation of new drugs for schizophrenia treatment targeting DNA methylation. This article is part of a Special Issue entitled 'Neurodevelopment Disorder'.

2 Followers
 · 
133 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The question in the title: 'what's new?' has two facets. First, are 'clinical' expectations met with success? Second, is the number of CNS disorders targeted by mGlu drugs still increasing? The answer to the first question is 'no', because development program with promising drugs in the treatment of schizophrenia, Parkinson's disease, and Fragile X syndrome have been discontinued. Nonetheless, we continue to be optimistic because there is still the concrete hope that some of these drugs are beneficial in targeted subpopulations of patients. The answer to the second question is 'yes', because mGlu ligands are promising targets for 'new' disorders such as type-1 spinocerebellar ataxia and absence epilepsy. In addition, the increasing availability of pharmacological tools may push mGlu7 and mGlu8 receptors into the clinical scenario. After almost 30 years from their discovery, mGlu receptors are still alive. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Current Opinion in Pharmacology 12/2014; 20C:89-94. DOI:10.1016/j.coph.2014.12.002 · 4.23 Impact Factor
  • Source
    Biological Psychiatry 02/2015; 77(4):307-9. DOI:10.1016/j.biopsych.2014.11.008 · 9.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prenatal stress causes predisposition to cognitive and emotional disturbances and is a risk factor towards the development of neuropsychiatric conditions like depression, bipolar disorders and schizophrenia. The extracellular protein Reelin, expressed by Cajal-Retzius cells during cortical development, plays critical roles on cortical lamination and synaptic maturation, and its deregulation has been associated with maladaptive conditions. In the present study, we address the effect of prenatal restraint stress (PNS) upon Reelin expression and signaling in pregnant rats during the last 10 days of pregnancy. Animals from one group, including control and PNS exposed fetuses, were sacrificed and analyzed using immunohistochemical, biochemical, cell biology and molecular biology approaches. We scored changes in the expression of Reelin, its signaling pathway and in the methylation of its promoter. A second group included control and PNS exposed animals maintained until young adulthood for behavioral studies. Using the optical dissector, we show decreased numbers of Reelin-positive neurons in cortical layer I of PNS exposed animals. In addition, neurons from PNS exposed animals display decreased Reelin expression that is paralleled by changes in components of the Reelin-signaling cascade, both in vivo and in vitro. Furthermore, PNS induced changes in the DNA methylation levels of the Reelin promoter in culture and in histological samples. PNS adult rats display excessive spontaneous locomotor activity, high anxiety levels and problems of learning and memory consolidation. No significant visuo-spatial memory impairment was detected on the Morris water maze. These results highlight the effects of prenatal stress on the Cajal-Retzius neuronal population, and the persistence of behavioral consequences using this treatment in adults, thereby supporting a relevant role of PNS in the genesis of neuropsychiatric diseases. We also propose an in vitro model that can yield new insights on the molecular mechanisms behind the effects of prenatal stress.
    PLoS ONE 02/2015; 10(2). DOI:10.1371/journal.pone.0117680 · 3.53 Impact Factor

Full-text

Download
30 Downloads
Available from
May 23, 2014