Protective effects of Lycium barbarum polysaccharide on neonatal rat primary cultured hippocampal neurons injured by oxygen-glucose deprivation and reperfusion.

Department of Pharmacology, Ningxia Medical University, Yinchuan, China.
Journal of molecular histology (Impact Factor: 1.75). 05/2012; 43(5):535-42. DOI: 10.1007/s10735-012-9420-4
Source: PubMed

ABSTRACT This study investigated the protective effects of Lycium barbarum polysaccharide (LBP) on alleviating injury from oxygen-glucose deprivation/reperfusion (OGD/RP) in primary cultured rat hippocampal neurons. Cultured hippocampal neurons were exposed to oxygen-glucose deprivation (OGD) for 2 h followed by a 24 h re-oxygenation. The MTT assay and the lactate dehydrogenase (LDH) release were used to determine the neuron viability. Superoxide dismutase (SOD), Glutathione peroxidase (GSH-PX), malondialdehyde (MDA) were determined by spectrophotometry using commercial kits. Mitochondrial membrane potential (MMP) and the intracellular free calcium concentration ([Ca(2+)](i)) in hippocampal neurons were measured using the confocal laser scanning microscope (CLSM). Treatment with LBP (10-40 mg/l) significantly attenuated neuronal damage and inhibited LDH release in a dose-dependent manner. Furthermore, LBP enhanced activities of SOD and GSH-PX but it decreased their MDA content, inhibited [Ca(2+)](i) elevation and decrease of MMP in ischemia-reperfusion treated hippocampal neurons. These findings suggested that LBP may be a potential neuroprotective agent for cerebral ischemia-reperfusion injury.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aims to investigate the neuroprotective effect of the rhizome of Gastrodia elata (GE) aqueous extract on beta-amyloid(A β )-induced toxicity in vivo and in vitro. Transgenic Drosophila mutants with A β -induced neurodegeneration in pan-neuron and ommatidia were used to determine the efficacy of GE. The antiapoptotic and antioxidative mechanisms of GE were also studied in A β -treated pheochromocytoma (PC12) cells. In vivo studies demonstrated that GE (5 mg/g Drosophila media)-treated Drosophila possessed a longer lifespan, better locomotor function, and less-degenerated ommatidia when compared with the A β -expressing control (all P < 0.05). In vitro studies illustrated that GE increased the cell viability of A β -treated PC12 cells in dose-dependent manner, probably through attenuation of A β -induced oxidative and apoptotic stress. GE also significantly upregulated the enzymatic activities of catalase, superoxide dismutase, and glutathione peroxidase, leading to the decrease of reactive oxidation species production and apoptotic marker caspase-3 activity. In conclusion, our current data presented the first evidence that the aqueous extract of GE was capable of reducing the A β -induced neurodegeneration in Drosophila, possibly through inhibition of apoptosis and reduction of oxidative stress. GE aqueous extract could be developed as a promising herbal agent for neuroprotection and novel adjuvant therapies for Alzheimer's disease.
    Evidence-based Complementary and Alternative Medicine 01/2013; 2013:516741. · 1.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the neuroprotective effect of Lycium barbarum polysaccharide (LBP) on focal cerebral ischemic injury in mice and to explore its possible mechanism. Male ICR mice were used to make the model of middle cerebral artery occlusion (MCAO) after intragastric administration with LBP (10, 20 and 40 mg/kg) and Nimodipine (0.4 mg/kg) for seven successive days. After 24 h of reperfusion, neurological scores were estimated and infarct volumes were measured by 2, 3, 5-triphenyltetrazolium chloride (TTC) staining. Morphological changes in ischemic brains were performed for hematoxylin-eosin (HE) staining. The number of apoptotic neurons was detected by TUNEL staining. The Bax, Bcl-2 protein expression and CytC, Caspase-3, -9 and cleaved PARP-1 activation were investigated by immunofluorescence and western-blot analysis. LBP (10, 20 and 40 mg/kg) treatment groups significantly reduced infract volume and neurological deficit scores. LBP also relieved neuronal morphological damage and attenuated the neuronal apoptosis. LBP at the dose of 40 mg/kg significantly suppressed overexpression of Bax, CytC, Caspase-3, -9 and cleaved PARP-1, and inhibited the reduction of Bcl-2 expression. Based on these findings we propose that LBP protects against focal cerebral ischemic injury by attenuating the mitochondrial apoptosis pathway.
    PLoS ONE 01/2014; 9(3):e90780. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, oxygen-glucose deprivation followed by reperfusion (OGD/R), an in vitro model of ischemia, was used to evaluate the neuroprotective effect of isoquercetin in primary culture of rat cortical neuronal cells. It was found that isoquercetin administered prior to the insult could prevent OGD/R-induced intracellular calcium concentrations ([Ca(2+)]i) increase, lactate dehydrogenase (LDH) release and cell viability decrease. For the first time, isoquercetin is described as a neuroprotective agent that potentially explains the alleviation and prevention from OGD/R-induced injury in neurons. Mechanistic studies showed that the neuroprotective effect of isoquercetin was carried out by anti-inflammatory signaling pathway of inhibiting protein expression of toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB), and mRNA expression of TNF-α and IL-6, accompanied by the anti-apoptotic signaling pathway of deactivation of extracellular-regulated kinase (ERK), Jun kinase (JNK) and p38, and inhibition of activity of caspase-3. Therefore, these studies highlighted the confirmation of isoquercetin, a flavonoid compound, as an anti-inflammation and anti-apoptosis factor which might be used as a therapeutic strategy for the ischemia/reperfusion (I/R) brain injury and related diseases.
    Neurochemistry International 10/2013; · 2.66 Impact Factor