Suprathreshold asymmetries in human motion perception.

Department of Otolaryngology, University of Rochester, Rochester, NY 14642, USA.
Experimental Brain Research (Impact Factor: 2.17). 05/2012; 219(3):369-79. DOI: 10.1007/s00221-012-3099-3
Source: PubMed

ABSTRACT Detection of asymmetries has been a mainstay of using vestibular reflexes to assess semicircular canal function. However, there has been relatively little work on how vestibular stimuli are perceived. Suprathreshold vestibular perception was measured in 13 normal healthy controls by having them compare the relative sizes of two yaw (vertical-axis rotation) or sway (right-left translation) stimuli. Both stimuli were 1.5 s in duration with a staircase used to adjust the relative size of the stimuli to find a pair of stimuli perceived as equal. Motion stimuli were delivered in darkness using a hexapod motion platform, and visual stimuli simulating motion were presented on a screen in the absence of platform motion. Both same direction (SD) and opposite direction (OD) stimuli were delivered in separate runs. After a two-interval stimulus, subjects reported which movement they perceived as larger. Cumulative distribution functions were fit to the responses so that the relative magnitudes of the two stimuli perceived as equal could be determined. For OD trial blocks, a directional asymmetry index was calculated to compare the relative size of perceived rightward and leftward motion. For all trial blocks, a temporal asymmetry index (TAI) was used to compare the relative size of the first and second intervals. Motion OD stimuli were perceived as equal in all subjects in yaw and all but one in sway. For visual OD stimuli, two subjects had slightly asymmetric responses for both sway and yaw. The TAI demonstrated asymmetry in 54% in yaw, in which the second interval was perceived to be larger in all but one subject who had an asymmetry. For sway, only two subjects had a significant asymmetry. Visual stimuli produced a similar rate of asymmetry. The direction and magnitude of these asymmetries were not significantly correlated with those seen for motion stimuli. Asymmetries were found in a fraction with the TAI in SD stimuli for motion in yaw (42%) and sway (33%), as well as for vision in yaw (60%) and sway (43%). The precision at discriminating SD motion stimuli decreased significantly with age, but there was no difference in OD motion or visual stimuli.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A theme in sensory perception is that exposure to a stimulus causes perception of subsequent stimuli to be shifted in the opposite direction. Such phenomenon is known as aftereffect and has been extensively described in the visual system as well as recently described for the vestibular system during translation. It is known from aviation studies that after a maneuver in roll, pilots can experience a false perception of roll in the opposite direction. The magnitude and duration of this effect as well as the potential influence of the gravity vector have not previously been defined. In the current paper this roll aftereffect (RAE) is examined in response to whole-body roll about an earth-horizontal axis in eight healthy human subjects. The peak velocity of a 0.5-s-duration roll was varied based on previous responses to find the point where subjects perceived no motion. Without a preceding stimulus, the starting position (upright, 9° left, or 9° right) did not influence roll perception. The RAE was measured in a completely dark room using an adapting (first interval) stimulus consisting of 9° of roll over 1.5 s (peak velocity, 12°/s), delivered 0.5, 3, or 6 s prior to test (second interval) stimulus. A significant RAE was seen in all subjects. Half a second after the adapting stimulus, a test stimulus had to be on average 1.5 ± 0.4°/s in the opposite direction to be perceived as stationary. When the subject remained upright after the adapting stimulus, the RAE diminished with time, although it remained significantly larger at 3 and 6 s when the subject remained tilted after the adapting stimulus. These data demonstrate that roll perception can be influenced by small preceding stimuli and tilt causes a persistence of the RAE.
    Experimental Brain Research 09/2012; 223(1):89-98. DOI:10.1007/s00221-012-3243-0 · 2.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The tilt-translation ambiguity occurs because acceleration due to translation cannot be differentiated from gravitational acceleration. Head tilt can occur independent of body tilt which further complicates the problem. The tilt-translation ambiguity is examined for fore-aft (surge) translation with head and/or body orientations that are tilted in pitch 10° forward or backward. Eleven human subjects (six female), mean age 40 years participated. Conditions included no tilt (NT), head and body tilt (HBT), head only tilt (HOT), and body only tilt (BOT). The fore-aft stimulus consisted of a 2 s (0.5 Hz) sine wave in acceleration which a maximum peak velocity of 10 cm/s. After each stimulus, the subject reported the direction of motion as forward or backward. Subsequent stimuli were adjusted to determine the point at which subjects were equally likely to report motion in either direction. During the HBT, responses were biased such that upward pitch caused a neutral stimulus to be more likely to be perceived as forward and downward pitch caused the stimulus to be more likely to be perceived as backward. The difference in the point of subjective equality based on the direction of tilt was 3.3 cm/s. During the BOT condition, the bias with respect to the direction of body tilt was in a similar direction with a difference in PSE 1.6 cm/s. During HOT and NT, there was no significant bias on fore-aft perception. These findings demonstrate that body tilt shifts the PSE of fore-aft direction discrimination while head tilt has no influence.
    Experimental Brain Research 08/2014; DOI:10.1007/s00221-014-4060-4 · 2.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In many sensory systems, perception of stimuli is influenced by previous stimulus exposure such that subsequent stimuli may be perceived as more neutral. This phenomenon is known as an aftereffect and has been studied for vision, audition, and some vestibular stimuli including roll and translation. Previous data on yaw rotation perception has focused on low-frequency stimuli on the order of a minute which may not be directly applicable to frequencies during ambulation. The aim of the current study is to look at the influence of yaw rotation on subsequent perception near 1 Hz, the predominant frequency of yaw rotation during human ambulation. Humans were rotated with 12 ° whole body adapting stimulus over 1 or 1.5 s. After an interstimulus interval (ISI) of 0.5, 1.0, 1.5, or 3 s, a test stimulus the same duration as the adapting stimulus was presented, and subjects pushed a button to identify the direction of the test stimulus as right or left. The direction and magnitude of the test stimulus was adjusted based on prior responses to find the stimulus at which no rotation was perceived. Experiments were conducted both in darkness and with a visual fixation point. The presence of a fixation point did not influence the aftereffect which was largest at 0.5 s with an average size of 0.78 ± 0.18 °/s (mean ± SE). The aftereffect diminished with a time constant of ~1 s. Thresholds were elevated after the adapting stimulus and also decreased with a time constant of ~1 s. These findings demonstrate that short adapting stimuli can induce significant aftereffects in yaw rotation perception and that these aftereffects are independent from the previously described velocity storage.
    Journal of the Association for Research in Otolaryngology 01/2014; 15(2). DOI:10.1007/s10162-013-0438-4 · 2.55 Impact Factor

Full-text (2 Sources)

Available from
May 27, 2014