Article

K+ channel alterations in the progression of experimental autoimmune encephalomyelitis

Integrated Biomedical Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
Neurobiology of Disease (Impact Factor: 5.2). 04/2012; 47(2):280-93. DOI: 10.1016/j.nbd.2012.04.012
Source: PubMed

ABSTRACT Voltage-gated K(+) (Kv) channels play critical roles not only in regulating synaptic transmission and intrinsic excitability of neurons, but also in controlling the function and proliferation of other cells in the central nervous system (CNS). The non-specific Kv channel blocker, 4-AminoPyridine (4-AP) (Dalfampridine, Ampyra®), is currently used to treat multiple sclerosis (MS), an inflammatory demyelinating disease. However, little is known how various types of Kv channels are altered in any inflammatory demyelinating diseases. By using established animal models for MS, experimental autoimmune encephalomyelitis (EAE), we report that expression and distribution patterns of Kv channels are altered in the CNS correlating with EAE severity. The juxtaparanodal (JXP) targeting of Kv1.2/Kvβ2 along myelinated axons is disrupted within demyelinated lesions in the white matter of spinal cord in EAE. Moreover, somatodendritic Kv2.1 channels in the motor neurons of lower spinal cord significantly decrease correlating with EAE severity. Interestingly, Kv1.4 expression surrounding lesions is markedly up-regulated in the initial acute phase of both EAE models. Its expression in glial fibrillary acidic protein (GFAP)-positive astrocytes further increases in the remitting phase of remitting-relapsing EAE (rrEAE), but decreases in late chronic EAE (chEAE) and the relapse of rrEAE, suggesting that Kv1.4-positive astrocytes may be neuroprotective. Taken together, our studies reveal myelin-dependent and -independent alterations of Kv channels in the progression of EAE and lay a solid foundation for future study in search of a better treatment for MS.

1 Follower
 · 
116 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Action potentials (APs) propagating along axons require the activation of voltage-gated Na(+) (Nav) channels. How Nav channels are transported into axons is unknown. We show that KIF5/kinesin-1 directly binds to ankyrin-G (AnkG) to transport Nav channels into axons. KIF5 and Nav1.2 channels bind to multiple sites in the AnkG N-terminal domain that contains 24 ankyrin repeats. Disrupting AnkG-KIF5 binding with small interfering RNA or dominant-negative constructs markedly reduced Nav channel levels at the axon initial segment (AIS) and along entire axons, thereby decreasing AP firing. Live-cell imaging showed that fluorescently tagged AnkG or Nav1.2 cotransported with KIF5 along axons. Deleting AnkG in vivo or virus-mediated expression of a dominant-negative KIF5 construct specifically decreased the axonal level of Nav, but not Kv1.2, channels in mouse cerebellum. These results indicate that AnkG functions as an adaptor to link Nav channels to KIF5 during axonal transport before anchoring them to the AIS and nodes of Ranvier.
    Developmental Cell 01/2014; DOI:10.1016/j.devcel.2013.11.023 · 10.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is the most frequent chronic inflammatory disease of the CNS, and imposes major burdens on young lives. Great progress has been made in understanding and moderating the acute inflammatory components of MS, but the pathophysiological mechanisms of the concomitant neurodegeneration-which causes irreversible disability-are still not understood. Chronic inflammatory processes that continuously disturb neuroaxonal homeostasis drive neurodegeneration, so the clinical outcome probably depends on the balance of stressor load (inflammation) and any remaining capacity for neuronal self-protection. Hence, suitable drugs that promote the latter state are sorely needed. With the aim of identifying potential novel therapeutic targets in MS, we review research on the pathological mechanisms of neuroaxonal dysfunction and injury, such as altered ion channel activity, and the endogenous neuroprotective pathways that counteract oxidative stress and mitochondrial dysfunction. We focus on mechanisms inherent to neurons and their axons, which are separable from those acting on inflammatory responses and might, therefore, represent bona fide neuroprotective drug targets with the capability to halt MS progression.
    Nature Reviews Neurology 03/2014; DOI:10.1038/nrneurol.2014.37 · 14.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS), the most frequent inflammatory disease of the central nervous system (CNS), affects about two and a half million individuals worldwide and causes major burdens to the patients, which develop the disease usually at the age of 20 to 40. MS is likely referable to a breakdown of immune cell tolerance to CNS self-antigens resulting in focal immune cell infiltration, activation of microglia and astrocytes, demyelination and axonal and neuronal loss. Here we discuss how altered expression patterns and dysregulated functions of ion channels contribute on a molecular level to nearly all pathophysiological steps of the disease. In particular the detrimental redistribution of ion channels along axons, as well as neuronal excitotoxicity with regard to imbalanced glutamate homeostasis during chronic CNS inflammation will be discussed in detail. Together, we describe which ion channels in the immune and nervous system commend as attractive future drugable targets in MS treatment.
    Experimental Neurology 12/2014; DOI:10.1016/j.expneurol.2013.12.006 · 4.62 Impact Factor

Full-text

Download
42 Downloads
Available from
Jun 5, 2014