NuRD and pluripotency: a complex balancing act.

Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
Cell stem cell (Impact Factor: 22.15). 05/2012; 10(5):497-503. DOI: 10.1016/j.stem.2012.04.011
Source: PubMed

ABSTRACT Embryonic stem cells (ESCs) are defined by two essential features--pluripotency and self-renewal--whose balance requires the concerted action of signal transduction pathways, transcription factor networks, and epigenetic regulators. Recent findings have implicated the NuRD chromatin remodeling complex in the sophisticated choreography of ESC regulatory pathways.

Download full-text


Available from: Paul A Wade, May 20, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A small toolkit of morphogens is used repeatedly to direct development, raising the question of how context dictates interpretation of the same cue. One example is the transforming growth factor β (TGF-β) pathway that in human embryonic stem cells fulfills two opposite functions: pluripotency maintenance and mesendoderm (ME) specification. Using proteomics coupled to analysis of genome occupancy, we uncover a regulatory complex composed of transcriptional effectors of the Hippo pathway (TAZ/YAP/TEAD), the TGF-β pathway (SMAD2/3), and the pluripotency regulator OCT4 (TSO). TSO collaborates with NuRD repressor complexes to buffer pluripotency gene expression while suppressing ME genes. Importantly, the SMAD DNA binding partner FOXH1, a major specifier of ME, is found near TSO elements, and upon fate specification we show that TSO is disrupted with subsequent SMAD-FOXH1 induction of ME. These studies define switch-enhancer elements and provide a framework to understand how cellular context dictates interpretation of the same morphogen signal in development.
    Cell Reports 12/2013; DOI:10.1016/j.celrep.2013.11.021 · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During animal development, gene transcription is tuned to tissue-appropriate levels. Here we uncover antagonistic regulation of transcript levels in the germline of Caenorhabditis elegans hermaphrodites. The histone methyltransferase MES-4 marks genes expressed in the germline with methylated lysine on histone H3 (H3K36me) and promotes their transcription; MES-4 also represses genes normally expressed in somatic cells and genes on the X chromosome. The DRM complex, which includes E2F/DP and Retinoblastoma homologs, affects germline gene expression and prevents excessive repression of X-chromosome genes. Using genome-scale analyses of germline tissue, we show that common germline-expressed genes are activated by MES-4 and repressed by DRM, and that MES-4 and DRM co-bind many germline-expressed genes. Reciprocally, MES-4 represses and DRM activates a set of autosomal soma-expressed genes and overall X-chromosome gene expression. Mutations in mes-4 and the DRM subunit lin-54 oppositely skew the transcript levels of their common targets and cause sterility. A double mutant restores target gene transcript levels closer to wild type, and the concomitant loss of lin-54 suppresses the severe germline proliferation defect observed in mes-4 single mutants. Together, "yin-yang" regulation by MES-4 and DRM ensures transcript levels appropriate for germ cell function, elicits robust but not excessive dampening of X-chromosome-wide transcription, and may poise genes for future expression changes. Our study reveals that conserved transcriptional regulators implicated in development and cancer counteract each other to fine-tune transcript dosage.
    G3-Genes Genomes Genetics 11/2013; 4(1). DOI:10.1534/g3.113.007849 · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Super-enhancers (SEs) are large clusters of transcriptional enhancers that are co-occupied by multiple lineage-specific transcription factors driving expression of genes that define cell identity. In embryonic stem cells (ESCs), SEs are highly enriched for the core pluripotency factors Oct4, Sox2, and Nanog. In this study, we sought to dissect the molecular control mechanism of SE activity in pluripotency and reprogramming. Starting from a protein interaction network surrounding Sox2, we identified Tex10 as a key pluripotency factor that plays a functionally significant role in ESC self-renewal, early embryo development, and reprogramming. Tex10 is enriched at SEs in a Sox2-dependent manner and coordinates histone acetylation and DNA demethylation at SEs. Tex10 activity is also important for pluripotency and reprogramming in human cells. Our study therefore highlights Tex10 as a core component of the pluripotency network and sheds light on its role in epigenetic control of SE activity for cell fate determination. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cell stem cell 04/2015; DOI:10.1016/j.stem.2015.04.001 · 22.15 Impact Factor