Article

In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope

Cornell University, School of Applied and Engineering Physics, 271 Clark Hall, Ithaca, New York 14853-2501.
Journal of Biomedical Optics (Impact Factor: 2.75). 04/2012; 17(4):040505. DOI: 10.1117/1.JBO.17.4.040505
Source: PubMed

ABSTRACT We use a compact and flexible multiphoton microendoscope (MPME) to acquire in vivo images of unstained liver, kidney, and colon from an anesthetized rat. The device delivers femtosecond pulsed 800 nm light from the core of a raster-scanned dual-clad fiber (DCF), which is focused by a miniaturized gradient-index lens assembly into tissue. Intrinsic fluorescence and second-harmonic generation signal from the tissue is epi-collected through the core and inner clad of the same DCF. The MPME has a rigid distal tip of 3 mm in outer diameter and 4 cm in length. The image field-of-view measures 115 μm by 115 μm and was acquired at 4.1 frames/s with 75 mW illumination power at the sample. Organs were imaged after anesthetizing Sprague-Dawley rats with isofluorane gas, accessing tissues via a ventral-midline abdominal incision, and isolating the organs with tongue depressors. In vivo multiphoton images acquired from liver, kidney, and colon using this device show features similar to that of conventional histology slides, without motion artifact, in ~75% of imaged frames. To the best of our knowledge, this is the first demonstration of multiphoton imaging of unstained tissue from a live subject using a compact and flexible MPME device.

0 Followers
 · 
135 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acute kidney injury (AKI) is a major global health problem; much research has been conducted on AKI, and numerous agents have shown benefit in animal studies, but none have translated into treatments. There is, therefore, a pressing unmet need to increase knowledge of the pathophysiology of AKI. Multiphoton microscopy (MPM) provides a tool to non-invasively visualize dynamic events in real time and at high resolution in rodent kidneys, and in this article we review its application to study novel mechanisms and treatments in different forms of AKI.
    Physiology 09/2014; 29(5):334-342. DOI:10.1152/physiol.00010.2014 · 5.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiphoton microscopy (MPM) enables real-time imaging of various cellular processes at submicron resolution. MPM is currently being used in neuroscience, oncology, and immunology. MPM has demonstrated promising results in urology. MPM has been used in the identification of spermatogenesis, evaluation of bladder cancer, and tissue identification in prostate cancer surgery. MPM has allowed the visualization of seminiferous tubules within the testis in a rat model and identified areas of spermatogenesis. MPM could potentially improve the efficacy of testicular sperm extraction. In bladder cancer evaluation, MPM has proven to be an effective imaging tool in identifying areas suspicious for malignancy. The imaging technology could be utilized in the future to provide urologists with an immediate impression of extracted bladder tissue, or as part of a cystoscopic device to evaluate the bladder in real time. Similarly, MPM has proven to be a useful imaging technique to evaluate prostate cancer. MPM could be utilized during a prostatectomy to help differentiate prostate from cavernous nerves that are closely adherent to the prostate. MPM uses a laser and safety studies will need to be performed prior to its utilization in the clinical setting.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several endomicroscope prototypes for nonlinear optical imaging were developed in the last decade for in situ analysis of tissue with cellular resolution by using short infrared light pulses. Fourier-transform-limited pulses at the tissue site are necessary for optimal excitation of faint endogenous signals. However, obtaining these transform-limited short pulses remains a challenge, and previously proposed devices did not achieve an optimal pulse delivery. We present a study of fibered endomicroscope architecture with an efficient femtosecond pulse delivery and a high excitation level at the output of commercially available double-clad fibers (DCFs). The endomicroscope incorporates a module based on a grism line to compensate for linear and nonlinear effects inside the system. Simulations and experimental results are presented and compared to the literature. Experimentally, we obtained short pulses down to 24 fs at the fiber output, what represents to the best of our knowledge the shortest pulse duration ever obtained at the output of a nonlinear endoscopic system without postcompression. The choice of the optimal DCF among four possible commercial components is discussed and evaluated in regard to multiphoton excitation and fluorescence emission. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
    Journal of Biomedical Optics 07/2014; 19(7):76005. DOI:10.1117/1.JBO.19.7.076005 · 2.75 Impact Factor

Full-text (2 Sources)

Download
66 Downloads
Available from
May 17, 2014