Visibility of microcalcification clusters and masses in breast tomosynthesis image volumes and digital mammography: A 4AFC human observer study

Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
Medical Physics (Impact Factor: 2.64). 05/2012; 39(5):2431-7. DOI: 10.1118/1.3694105
Source: PubMed


To investigate the visibility of simulated lesions in digital breast tomosynthesis (BT) image volumes compared with 2D digital mammography (DM).
Simulated lesions (masses and microcalcifications) were added to images of the same women acquired on a DM system (Mammomat Novation, Siemens) and a BT prototype. The same beam quality was used for the DM and BT acquisitions. The total absorbed dose resulting from a 25-projection BT acquisition and reconstruction (BT(25)) was approximately twice that of a single DM view. By excluding every other projection image from the reconstruction (BT(13)), approximately the same dose as in DM was effected. Simulated microcalcifications were digitally added with varying contrast to the DM and BT images. Simulated masses with 8 mm diameter were also added to BT images. A series of 4-alternative forced choice (4AFC) human observer experiments were conducted. Four medical physicists participated in all experiments, each consisting of 60 trials per experimental condition. The observers interpreted the BT image volumes in cine-mode at a fixed image sequence speed. The required threshold contrast (S(t)) to achieve a detectability index (d') of 2.5 (i.e., 92.5% correct decisions) was determined.
The S(t) for mass detection in DM was approximately a factor of 2 higher than required in BT indicating that the detection of masses was improved under BT conditions compared to DM. S(t) for microcalcification detection was higher for BT than for DM at both BT dose levels (BT(25) and BT(13)), with a statistically significant difference in S(t) between DM and BT(13). These results indicate a dose-dependent decrease in detection performance in BT for detection of microcalcifications.
In agreement with previous investigations, masses of size 8 mm can be detected with less contrast in BT than in DM indicating improved detection performance for BT. However, for the investigated microcalcifications, the results of this study indicate potentially worse performance for BT than for DM at the same dose level.

Download full-text


Available from: Anders Tingberg,
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives: To evaluate the efficiency of different methods of reading breast tomosynthesis (BT) image volumes. Methods: All viewing procedures consisted of free scroll volume browsing and three were combined with initial cine loops at three different frame rates (9, 14 and 25 fps). The presentation modes consisted of vertically and horizontally orientated BT image volumes. Fifty-five normal BT image volumes in mediolateral oblique view were collected. In these, simulated lesions were inserted, creating four unique image sets, one for each viewing procedure. Four observers interpreted the cases in a free-response task. Time efficiency, visual attention and search were investigated using eye tracking. Results: Horizontally orientated BT image volumes were read faster than vertically when using free scroll browsing only and when combined with fast cine loop. Cine loops at slow frame rates were ruled out as inefficient. Conclusions: In general, horizontally oriented BT image volumes were read more efficiently. All viewing procedures except for slow frame rates were promising when assuming equivalent detection performance.
    European Radiology 10/2012; 23(4). DOI:10.1007/s00330-012-2675-z · 4.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this article is to review the major limitations in current mammography and to describe how these may be addressed by digital breast tomosynthesis (DBT). DBT is a novel imaging technology in which an x-ray fan beam sweeps in an arc across the breast, producing tomographic images and enabling the production of volumetric, three-dimensional (3D) data. It can reduce tissue overlap encountered in conventional two-dimensional (2D) mammography, and thus has the potential to improve detection of breast cancer, reduce the suspicious presentations of normal tissues, and facilitate accurate differentiation of lesion types. This paper reviews the latest studies of this new technology. Issues including diagnostic efficacy, reading time, radiation dose, and level of compression; cost and new innovations are considered.
    Clinical Radiology 03/2013; 68(5). DOI:10.1016/j.crad.2013.01.007 · 1.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We are developing a CAD system to assist radiologists in detecting microcalcification clusters (MCs) in digital breast tomosynthesis (DBT). In this study, we investigated the feasibility of using as input to the CAD system an enhanced DBT volume that was reconstructed with the iterative simultaneous algebraic reconstruction technique (SART) regularized by a new multiscale bilateral filtering (MBiF) method. The MBiF method utilizes the multiscale structures of the breast to selectively enhance MCs and preserve mass spiculations while smoothing noise in the DBT images. The CAD system first extracted the enhancement-modulated calcification response (EMCR) in the DBT volume. Detection of the seed points for MCs and individual calcifications were guided by the EMCR. MC candidates were formed by dynamic clustering. FPs were further reduced by analysis of the feature characteristics of the MCs. With IRB approval, two-view DBT of 91 subjects with biopsy-proven MCs were collected. Seventy-eight views from 39 subjects with MCs were used for training and the remaining 52 cases were used for independent testing. For view-based detection, a sensitivity of 85% was achieved at 3.23 FPs/volume. For case-based detection, the same sensitivity was obtained at 1.63 FPs/volume. The results indicate that the new MBiF method is useful in improving the detection accuracy of clustered microcalcifications. An effective CAD system for microcalcification detection in DBT has the potential to eliminate the need for additional mammograms, thereby reducing patient dose and reading time.
    SPIE Medical Imaging; 03/2013
Show more