Genome organization and characteristics of soybean microRNAs

BMC Genomics (Impact Factor: 3.99). 05/2012; 13(1):169. DOI: 10.1186/1471-2164-13-169
Source: PubMed

ABSTRACT Background
microRNAs (miRNAs) are key regulators of gene expression and play important roles in many aspects of plant biology. The role(s) of miRNAs in nitrogen-fixing root nodules of leguminous plants such as soybean is not well understood. We examined a library of small RNAs from Bradyrhizobium japonicum-inoculated soybean roots and identified novel miRNAs. In order to enhance our understanding of miRNA evolution, diversification and function, we classified all known soybean miRNAs based on their phylogenetic conservation (conserved, legume- and soybean-specific miRNAs) and examined their genome organization, family characteristics and target diversity. We predicted targets of these miRNAs and experimentally validated several of them. We also examined organ-specific expression of selected miRNAs and their targets.

We identified 120 previously unknown miRNA genes from soybean including 5 novel miRNA families. In the soybean genome, genes encoding miRNAs are primarily intergenic and a small percentage were intragenic or less than 1000 bp from a protein-coding gene, suggesting potential co-regulation between the miRNA and its parent gene. Difference in number and orientation of tandemly duplicated miRNA genes between orthologous genomic loci indicated continuous evolution and diversification. Conserved miRNA families are often larger in size and produce less diverse mature miRNAs than legume- and soybean-specific families. In addition, the majority of conserved and legume-specific miRNA families produce 21 nt long mature miRNAs with distinct nucleotide distribution and regulate a more conserved set of target mRNAs compared to soybean-specific families. A set of nodule-specific target mRNAs and their cognate regulatory miRNAs had inverse expression between root and nodule tissues suggesting that spatial restriction of target gene transcripts by miRNAs might govern nodule-specific gene expression in soybean.

Genome organization of soybean miRNAs suggests that they are actively evolving. Distinct family characteristics of soybean miRNAs suggest continuous diversification of function. Inverse organ-specific expression between selected miRNAs and their targets in the roots and nodules, suggested a potential role for these miRNAs in regulating nodule development.

Download full-text


Available from: Senthil Subramanian, Sep 26, 2015
1 Follower
43 Reads
  • Source
    • "In plants, pri-miRNA is cleaved into miRNA precursor (pre-miRNA) containing a hairpin-like structure, which is further cleaved to give rise to a miRNA/miRNA * duplex that is methylated at the 3 ends. miRNA * is generally degraded and the mature miRNA molecule is incorporated into a RNAinduced silencing complex to target complementary mRNAs through either cleavage or translational inhibition (Mallory and Vaucheret, 2006; Banks et al., 2012; Turner et al., 2012). In addition to silencing protein coding mRNAs, miRNAs are able to target trans-acting siRNA transcripts (TAS) to trigger production of phased tasiRNAs. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A wide range of RNA species interacting with microRNAs (miRNAs) form a complex gene regulation network and play vital roles in diverse biological processes. In this study, we performed a genome-wide identification of endogenous target mimics (eTMs) for miRNAs and phased-siRNA-producing loci (PHAS) in soybean with a focus on those involved in lipid metabolism. The results showed that a large number of eTMs and PHAS genes could be found in soybean. Additionally, we found that lipid metabolism related genes were potentially regulated by 28 miRNAs, and nine of them were potentially further regulated by a number of eTMs with expression evidence. Thirty-three miRNAs were found to trigger production of phasiRNAs from 49 PHAS genes, which were able to target lipid metabolism related genes. Degradome data supported miRNA-and/or phasiRNA-mediated cleavage of genes involved in lipid metabolism. Most eTMs for miRNAs involved in lipid metabolism and phasiRNAs targeting lipid metabolism related genes showed a tissue-specific expression pattern. Our bioinformatical evidences suggested that lipid metabolism in soybean is potentially regulated by a complex non-coding network, including miRNAs, eTMs, and phasiRNAs, and the results extended our knowledge on functions of non-coding RNAs.
    Frontiers in Plant Science 12/2014; 5. DOI:10.3389/fpls.2014.00743 · 3.95 Impact Factor
  • Source
    • "Actually, several studies revealed that the origin and evolution of miRNA loci resemble that of protein-coding genes, being prompted by classical evolutionary forces, such as duplication, mutation and genetic drift. Such dynamism generated paralogous members producing identical or nearly identical mature sequences [5,6] many of which are clusterized and expressed in a cell-specific or tissue-enriched basis [7,8]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background MicroRNAs (miRNAs) are small non-coding RNA molecules with an important role upon post-transcriptional regulation. These molecules have been shown essential for several cellular processes in vertebrates, including muscle biology. Many miRNAs were described as exclusively or highly expressed in skeletal and/or cardiac muscle. However, knowledge on the genomic organization and evolution of muscle miRNAs has been unveiled in a reduced number of vertebrates and mostly only reflects their organization in mammals, whereas fish genomes remain largely uncharted. The main goal of this study was to elucidate particular features in the genomic organization and the putative evolutionary history of muscle miRNAs through a genome-wide comparative analysis of cartilaginous and bony fish genomes.ResultsAs major outcomes we show that (1) miR-208 was unexpectedly absent in cartilaginous and ray-finned fish genomes whereas it still exist in other vertebrate groups; (2) miR-499 was intergenic in medaka and stickleback conversely to other vertebrates where this miRNA is intronic; (3) the zebrafish genome is the unique harboring two extra paralogous copies of miR-499 and their host gene (Myh7b); (4) a rare deletion event of the intergenic and bicistronic cluster miR-1-1/133a-2 took place only into Tetraodontiformes genomes (pufferfish and spotted green puffer); (5) the zebrafish genome experienced a duplication event of miR-206/-133b; and (6) miR-214 was specifically duplicated in species belonging to superorder Acanthopterygii.Conclusions Despite of the aforementioned singularities in fish genomes, large syntenic blocks containing muscle-enriched miRNAs were found to persist, denoting colligated functionality between miRNAs and neighboring genes. Based on the genomic data here obtained, we envisioned a feasible scenario for explaining muscle miRNAs evolution in vertebrates.
    BMC Evolutionary Biology 09/2014; 14(1):196. DOI:10.1186/s12862-014-0196-x · 3.37 Impact Factor
  • Source
    • "Small RNAs regulate defense in soybean 931 cally challenging especially when the miRNAs are generated from multiple MIR loci. Soybean has a tetraploid genome with 12 potential MIR393 loci (Turner et al., 2012). In order to evaluate the function of miR393, we generated Agrobacterium rhizogenes-induced transgenic roots with reduced levels of mature miR393 using the short tandem target mimic (STTM) technique (Tang et al., 2012; Yan et al., 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The genus Phytophthora consists of many notorious pathogens of crops and forestry trees. To date, battling Phytophthora diseases is challenged by a lack of understanding on the pathogenesis. We investigated the role of small RNAs in regulating soybean defense in response to infection by Phytophthora sojae, the second most destructive pathogen of soybean. Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are universal regulators that repress target gene expression in eukaryotes. We identified known and novel small RNAs that differentially accumulated during P. sojae infection in soybean roots. Among them, miR393 and miR166 were induced by heat-inactivated P. sojae hyphae, indicating that they may be involved in soybean basal defense. Indeed, knocking down the level of mature miR393 led to enhanced susceptibility of soybean to P. sojae; furthermore, the expression of isoflavonoid biosynthetic genes was drastically reduced in the miR393-knockdown roots. These data suggest that miR393 promotes soybean defense against P. sojae. In addition to miRNAs, P. sojae infection also resulted in increased accumulation of phased siRNAs (phasiRNAs) that are predominantly generated from the canonical resistance genes encoding nucleotide binding-leucine rich repeat (NB-LRR) proteins and the genes encoding pentatricopeptide repeat (PPR)-containing proteins. This work highlights specific miRNAs and phasiRNAs that regulate defense-associated genes in soybean during Phytophthora infection. This article is protected by copyright. All rights reserved.
    The Plant Journal 06/2014; 79(6). DOI:10.1111/tpj.12590 · 5.97 Impact Factor
Show more