Article

Genome organization and characteristics of soybean microRNAs

BMC Genomics (Impact Factor: 4.04). 05/2012; 13(1):169. DOI: 10.1186/1471-2164-13-169
Source: PubMed

ABSTRACT Background
microRNAs (miRNAs) are key regulators of gene expression and play important roles in many aspects of plant biology. The role(s) of miRNAs in nitrogen-fixing root nodules of leguminous plants such as soybean is not well understood. We examined a library of small RNAs from Bradyrhizobium japonicum-inoculated soybean roots and identified novel miRNAs. In order to enhance our understanding of miRNA evolution, diversification and function, we classified all known soybean miRNAs based on their phylogenetic conservation (conserved, legume- and soybean-specific miRNAs) and examined their genome organization, family characteristics and target diversity. We predicted targets of these miRNAs and experimentally validated several of them. We also examined organ-specific expression of selected miRNAs and their targets.

Results
We identified 120 previously unknown miRNA genes from soybean including 5 novel miRNA families. In the soybean genome, genes encoding miRNAs are primarily intergenic and a small percentage were intragenic or less than 1000 bp from a protein-coding gene, suggesting potential co-regulation between the miRNA and its parent gene. Difference in number and orientation of tandemly duplicated miRNA genes between orthologous genomic loci indicated continuous evolution and diversification. Conserved miRNA families are often larger in size and produce less diverse mature miRNAs than legume- and soybean-specific families. In addition, the majority of conserved and legume-specific miRNA families produce 21 nt long mature miRNAs with distinct nucleotide distribution and regulate a more conserved set of target mRNAs compared to soybean-specific families. A set of nodule-specific target mRNAs and their cognate regulatory miRNAs had inverse expression between root and nodule tissues suggesting that spatial restriction of target gene transcripts by miRNAs might govern nodule-specific gene expression in soybean.

Conclusions
Genome organization of soybean miRNAs suggests that they are actively evolving. Distinct family characteristics of soybean miRNAs suggest continuous diversification of function. Inverse organ-specific expression between selected miRNAs and their targets in the roots and nodules, suggested a potential role for these miRNAs in regulating nodule development.

Full-text

Available from: Senthil Subramanian, Apr 21, 2015
1 Follower
 · 
255 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The soybean cyst nematode (SCN), Heterodera glycines, is the most devastating pathogen of soybean worldwide. SiRNAs (small interfere RNAs) have been proven to induce the silencing of cyst nematode genes. However, whether small RNAs from soybean root have evolved a similar mechanism against SCN is unknown. Two genetically related soybean sister lines (ZP03-5373 and ZP03-5413), which are resistant and susceptible, respectively, to SCN race 4 infection were selected for small RNA deep sequencing to identify small RNAs targeted to SCN. We identified 71 less-conserved miRNAs-miRNAs* counterparts belonging to 32 families derived from 91 loci, and 88 novel soybean-specific miRNAs with distinct expression patterns. The identified miRNAs targeted 42 genes representing a wide range of enzymatic and regulatory activities. Roots of soybean conserved one TAS (Trans-acting siRNA) gene family with a similar but unique trans-acting small interfering RNA (tasiRNA) biogenesis profile. In addition, we found that six miRNAs (gma-miR393, 1507, 1510, 1515, 171, 2118) guide targets to produce secondary phasiRNAs (phased, secondary, small interfering RNAs) in soybean root. Multiple targets of these phasiRNAs were predicted and detected. Importantly, we also found that the expression of 34 miRNAs differed significantly between the two lines. Seven ZP03-5373-specific miRNAs were differentially expressed after SCN infection. Forty-four transcripts from SCN were predicted to be potential targets of ZP03-5373-specific differential miRNAs. These findings suggest that miRNAs play an important role in the soybean response to SCN.
    PLoS ONE 10/2014; 9(10):e110051. DOI:10.1371/journal.pone.0110051 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Among legumes, chickpea (Cicer arietinum L.) is the second most important crop after soybean. MicroRNAs (miRNAs) play important roles by regulating target gene expression important for plant development and tolerance to stress conditions. Additionally, recently discovered phased siRNAs (phasiRNAs), a new class of small RNAs, are abundantly produced in legumes. Nevertheless, little is known about these regulatory molecules in chickpea. The small RNA population was sequenced from leaves and flowers of chickpea to identify conserved and novel miRNAs as well as phasiRNAs/phasiRNA loci. Bioinformatics analysis revealed 157 miRNA loci for the 96 highly conserved and known miRNA homologs belonging to 38 miRNA families in chickpea. Furthermore, 20 novel miRNAs belnging to 17 miRNA families were identified. Sequence analysis revealed approximately 60 phasiRNA loci. Potential target genes likely to be regulated by these miRNAs were predicted and some were confirmed by modified 5′ RACE assay. Predicted targets are mostly transcription factors that might be important for developmental processes, and others include superoxide dismutases, plantacyanin, laccases and F-box proteins that could participate in stress responses and protein degradation. Overall, this study provides an inventory of miRNA–target gene interactions for chickpea, useful for the comparative analysis of small RNAs among legumes.
    Plant Science 03/2015; 9. DOI:10.1016/j.plantsci.2015.03.002 · 4.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A wide range of RNA species interacting with microRNAs (miRNAs) form a complex gene regulation network and play vital roles in diverse biological processes. In this study, we performed a genome-wide identification of endogenous target mimics (eTMs) for miRNAs and phased-siRNA-producing loci (PHAS) in soybean with a focus on those involved in lipid metabolism. The results showed that a large number of eTMs and PHAS genes could be found in soybean. Additionally, we found that lipid metabolism related genes were potentially regulated by 28 miRNAs, and nine of them were potentially further regulated by a number of eTMs with expression evidence. Thirty-three miRNAs were found to trigger production of phasiRNAs from 49 PHAS genes, which were able to target lipid metabolism related genes. Degradome data supported miRNA-and/or phasiRNA-mediated cleavage of genes involved in lipid metabolism. Most eTMs for miRNAs involved in lipid metabolism and phasiRNAs targeting lipid metabolism related genes showed a tissue-specific expression pattern. Our bioinformatical evidences suggested that lipid metabolism in soybean is potentially regulated by a complex non-coding network, including miRNAs, eTMs, and phasiRNAs, and the results extended our knowledge on functions of non-coding RNAs.
    Frontiers in Plant Science 12/2014; 5. DOI:10.3389/fpls.2014.00743 · 3.64 Impact Factor