Effect of Electron-Phonon Interaction Range for a Half-Filled Band in One Dimension

Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074 Würzburg, Germany.
Physical Review Letters (Impact Factor: 7.73). 05/2012; 109(11). DOI: 10.1103/PhysRevLett.109.116407
Source: arXiv

ABSTRACT We demonstrate that fermion-boson models with nonlocal interactions can be
simulated at finite band filling with the continuous-time quantum Monte Carlo
method. We apply this method to explore the influence of the electron-phonon
interaction range for a half-filled band in one dimension, covering the full
range from the Holstein to the Fr\"ohlich regime. The phase diagram contains
metallic, Peierls, and phase-separated regions, which we characterize in terms
of static and dynamical correlation functions. In particular, our results
reveal a suppression of $2k_F$ charge correlations with increasing interaction
range, allowing for a power-law decay comparable to the pairing correlations.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Employing the recently developed self-consistent variational basis generation scheme, we have investigated the bipolaron-bipolaron interaction within the purview of Holstein-Hubbard and the Froehlich-Hubbard model on a discrete one-dimensional lattice. The density-matrix renormalization group (DMRG) method has also been used for the Holstein-Hubbard model. We have shown that there exists no bipolaron-bipolaron attraction in the Holstein-Hubbard model. In contrast, we have obtained clear-cut bipolaron-bipolaron attraction in the Froehlich-Hubbard model. Composite bipolarons are formed above a critical electron-phonon coupling strength, which can survive the finite Hubbard U effect. We have constructed the phase diagram of Froehlich-Hubbard polarons and bipolarons, and discussed the phase separation in terms of the formation of composite bipolarons.
    Physical Review B 01/2014; 89:035146. · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We determine the phase diagram of a polaron model with mixed breathing-mode and Su-Schrieffer-Heeger couplings and show that it has two sharp transitions, in contrast to pure models which exhibit one (for Su-Schrieffer-Heeger coupling) or no (for breathing-mode coupling) transition. We then show that ultracold molecules trapped in optical lattices can be used as a quantum simulator to study precisely this mixed Hamiltonian, and that the relative contributions of the two couplings can be tuned with external electric fields. The parameters of current experiments place them in the region where one of the transitions occurs. We also propose a scheme to measure the polaron dispersion using stimulated Raman spectroscopy.
    Physical Review Letters 05/2013; 110(22):223002. · 7.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyze the dynamical response of a ultracold binary gas mixture in presence of strong boson-fermion couplings. Mapping the problem onto that of the optical response of a metal/semiconductor electronic degrees of freedom to electromagnetic perturbation we calculate the corresponding dynamic linear response susceptibility in the non-perturbative regimes of strong boson-fermion coupling using diagrammatic resummation technique as well as quantum Monte Carlo simulations. We evaluate the Bragg spectral function as well as the optical conductivity and find a pseudogap, which forms in certain parameter regimes.
    Physica B Condensed Matter 12/2014; 454:224-234. · 1.28 Impact Factor

Full-text (2 Sources)

Available from
Nov 25, 2014