Article

Implications of Altered Glutathione Metabolism in Aspirin-Induced Oxidative Stress and Mitochondrial Dysfunction in HepG2 Cells

Faculty of Pharmacy, Ain Shams University, Egypt
PLoS ONE (Impact Factor: 3.53). 04/2012; 7(4):e36325. DOI: 10.1371/journal.pone.0036325
Source: PubMed

ABSTRACT We have previously reported that acetylsalicylic acid (aspirin, ASA) induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH)-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO), prior to ASA treatment, cytotoxicity of the drug is augmented. On the other hand, when GSH-depleted cells were treated with N-acetyl cysteine (NAC), cytotoxicity/apoptosis caused by ASA was attenuated with a significant recovery in oxidative stress, GSH homeostasis, DNA fragmentation and some of the mitochondrial functions. NAC treatment, however, had no significant effects on the drug-induced inhibition of mitochondrial aconitase activity and ATP synthesis in GSH-depleted cells. Our results have confirmed that aspirin increases apoptosis by increased reactive oxygen species production, loss of mitochondrial membrane potential and inhibition of mitochondrial respiratory functions. These effects were further amplified when GSH-depleted cells were treated with ASA. We have also shown that some of the effects of aspirin might be associated with reduced GSH homeostasis, as treatment of cells with NAC attenuated the effects of BSO and aspirin. Our results strongly suggest that GSH dependent redox homeostasis in HepG2 cells is critical in preserving mitochondrial functions and preventing oxidative stress associated complications caused by aspirin treatment.

Download full-text

Full-text

Available from: Haider Raza, Sep 08, 2014
0 Followers
 · 
137 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, HepG2 cells were exposed to 0.04-40mg/L Irgarol 1051. Results show that Irgarol 1051 can damage cell morphology and cause a significant decrease in cell viability. Positive staining by Annexin V, caspase-3 activity enhancement, and the damage in cell ultrastructure indicated an apoptotic mode of cell death for 4.0mg/L Irgarol 1051 treatment. At the same time, capase-9 was also significantly induced by 0.4 and 4.0mg/L Irgarol 1051 at 72h, which suggests that the intrinsic mitochondria pathway was involved in the apoptosis. The mitochondrial membrane potential decreased significantly after the HepG2 cells were exposed to Irgarol 1051 for 6 and 72h. Especially, the translocation of cytochrome c from mitochondria to cytosol was recorded, supporting the idea that the mitochondrial pathway was involved in the apoptosis signal pathways induced by Irgarol 1051. The significantly increased levels of intracellular reactive oxygen species (ROS) and an immediate ROS burst were also recorded. The results here may imply that Irgarol 1051 induces HepG2 cell apoptosis through mitochondrial dysfunction and oxidative stresses. Although it is possible that this chemical has no detrimental effects on human health at the environmentally relevant concentration, it may cause problems to top coastal predators due to bio-accumulation through the food chain.
    Toxicology in Vitro 05/2013; 27(6). DOI:10.1016/j.tiv.2013.05.006 · 3.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonsteroidal anti-inflammatory drugs (NSAIDs) have long been used to treat pain, fever, and inflammation. However, mounting evidence shows that NSAIDs, such as aspirin, have very promising antineoplastic properties. The chemopreventive, antiproliferative behaviour of NSAIDs has been associated with both their inactivation of cyclooxygenases (COX) and their ability to induce apoptosis via pathways that are largely COX-independent. In this review, the various proapoptotic pathways induced by traditional and novel NSAIDs such as phospho-NSAIDs, hydrogen sulfide-releasing NSAIDs and nitric oxide-releasing NSAIDs in mammalian cell lines are discussed, as well as the proapoptotic effects of NSAIDs on budding yeast which retains the hallmarks of mammalian apoptosis. The significance of these mechanisms in terms of the role of NSAIDs in effective cancer prevention is considered.
    Oxidative Medicine and Cellular Longevity 08/2013; 2013:504230. DOI:10.1155/2013/504230 · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The antiproliferative activity of the aspirin derivative [2-acetoxy-(2-propynyl)benzoate]hexacarbonyldicobalt (Co-ASS) and its analogue hexacarbonyl[μ-(2-ethylphenyl)methanol]dicobalt (Co-EPM) was investigated on malignant pleural mesothelioma (MPM) cell lines, having an epithelioid or a sarcomatoid phenotype. In sarcomatoid cell lines Co-ASS was more potent than Co-EPM and the prototypal metallo-drug cisplatin, and induced cell death through the intrinsic apoptotic pathway, associated with a strong NF-κB inhibition. In contrast, both Co-ASS and Co-EPM showed only a modest cytostatic activity against epithelioid MPM cells. Co-EPM induced an increase of senescent cells, while Co-ASS did not; the different outcomes were traced back to the organic (aspirin-like) portion of the molecule. Both Co-EPM and Co-ASS significantly reduced reactive oxygen/nitrogen species (ROS/RNS), and in turn nitrites, suggesting that the hexacarbonyldicobalt moiety may deliver CO within the cell, acting as a CO-releasing molecule (CO-RM). In perspective, Co-ASS would be better considered as a CO-NSAID agent (a CO-releasing molecule retaining the NSAID properties similar to NO- and H2S-NSAIDs) than as an antitumor drug candidate.
    Metallomics 09/2013; DOI:10.1039/c3mt00117b · 3.98 Impact Factor