Article

Generation and Analysis of a Mouse Intestinal Metatranscriptome through Illumina Based RNA-Sequencing

Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto, Canada.
PLoS ONE (Impact Factor: 3.53). 04/2012; 7(4):e36009. DOI: 10.1371/journal.pone.0036009
Source: PubMed

ABSTRACT With the advent of high through-put sequencing (HTS), the emerging science of metagenomics is transforming our understanding of the relationships of microbial communities with their environments. While metagenomics aims to catalogue the genes present in a sample through assessing which genes are actively expressed, metatranscriptomics can provide a mechanistic understanding of community inter-relationships. To achieve these goals, several challenges need to be addressed from sample preparation to sequence processing, statistical analysis and functional annotation. Here we use an inbred non-obese diabetic (NOD) mouse model in which germ-free animals were colonized with a defined mixture of eight commensal bacteria, to explore methods of RNA extraction and to develop a pipeline for the generation and analysis of metatranscriptomic data. Applying the Illumina HTS platform, we sequenced 12 NOD cecal samples prepared using multiple RNA-extraction protocols. The absence of a complete set of reference genomes necessitated a peptide-based search strategy. Up to 16% of sequence reads could be matched to a known bacterial gene. Phylogenetic analysis of the mapped ORFs revealed a distribution consistent with ribosomal RNA, the majority from Bacteroides or Clostridium species. To place these HTS data within a systems context, we mapped the relative abundance of corresponding Escherichia coli homologs onto metabolic and protein-protein interaction networks. These maps identified bacterial processes with components that were well-represented in the datasets. In summary this study highlights the potential of exploiting the economy of HTS platforms for metatranscriptomics.

0 Followers
 · 
373 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microbiome-wide gene expression profiling through high-throughput RNA sequencing ('metatranscriptomics') offers a powerful means to functionally interrogate complex microbial communities. Key to successful exploitation of these datasets is the ability to confidently match relatively short sequence reads to known bacterial transcripts. In the absence of reference genomes, such annotation efforts may be enhanced by assembling reads into longer contiguous sequences ('contigs'), prior to database search strategies. Since reads from homologous transcripts may derive from several species, represented at different abundance levels, it is not clear how well current assembly pipelines perform for metatranscriptomic datasets. Here we evaluate the performance of four currently employed assemblers including de novo transcriptome assemblers - Trinity and Oases; the metagenomic assembler - Metavelvet; and the recently developed metatranscriptomic assembler IDBA-MT. We evaluated the performance of the assemblers on a previously published dataset of single-end RNA sequence reads derived from the large intestine of an inbred non-obese diabetic mouse model of type 1 diabetes. We found that Trinity performed best as judged by contigs assembled, reads assigned to contigs, and number of reads that could be annotated to a known bacterial transcript. Only 15.5% of RNA sequence reads could be annotated to a known transcript in contrast to 50.3% with Trinity assembly. Paired-end reads generated from the same mouse samples resulted in modest performance gains. A database search estimated that the assemblies are unlikely to erroneously merge multiple unrelated genes sharing a region of similarity (<2% of contigs). A simulated dataset based on ten species confirmed these findings. A more complex simulated dataset based on 72 species found that greater assembly errors were introduced than is expected by sequencing quality. Through the detailed evaluation of assembly performance, the insights provided by this study will help drive the design of future metatranscriptomic analyses. Assembly of metatranscriptome datasets greatly improved read annotation. Of the four assemblers evaluated, Trinity provided the best performance. For more complex datasets, reads generated from transcripts sharing considerable sequence similarity can be a source of significant assembly error, suggesting a need to collate reads on the basis of common taxonomic origin prior to assembly.
    01/2014; 2:39. DOI:10.1186/2049-2618-2-39
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Some of the most transformative discoveries promising to enable the resolution of this century's grand societal challenges will most likely arise from environmental science and particularly environmental microbiology and biotechnology. Understanding how microbes interact in situ, and how microbial communities respond to environmental changes remains an enormous challenge for science. Systems biology offers a powerful experimental strategy to tackle the exciting task of deciphering microbial interactions. In this framework, entire microbial communities are considered as metaorganisms and each level of biological information (DNA, RNA, proteins and metabolites) is investigated along with in situ environmental characteristics. In this way, systems biology can help unravel the interactions between the different parts of an ecosystem ultimately responsible for its emergent properties. Indeed each level of biological information provides a different level of characterisation of the microbial communities. Metagenomics, metatranscriptomics, metaproteomics, metabolomics and SIP-omics can be employed to investigate collectively microbial community structure, potential, function, activity and interactions. Omics approaches are enabled by high-throughput 21st century technologies and this review will discuss how their implementation has revolutionised our understanding of microbial communities.
    12/2015; 13:24–32. DOI:10.1016/j.csbj.2014.11.009
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the structure, functions, activities and dynamics of microbial communities in natural environments is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied "open-format" and "closed-format" detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of environmental applications and focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complementary high-throughput molecular technologies to address important ecological questions. Copyright © 2015 Zhou et al.
    mBio 01/2015; 6(1). DOI:10.1128/mBio.02288-14 · 6.88 Impact Factor

Full-text (2 Sources)

Download
104 Downloads
Available from
Jun 5, 2014