Article

Regulation of Motility of Myogenic Cells in Filling Limb Muscle Anlagen by Pitx2

Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America.
PLoS ONE (Impact Factor: 3.53). 04/2012; 7(4):e35822. DOI: 10.1371/journal.pone.0035822
Source: PubMed

ABSTRACT Cells of the ventrolateral dermomyotome delaminate and migrate into the limb buds where they give rise to all muscles of the limbs. The migratory cells proliferate and form myoblasts, which withdraw from the cell cycle to become terminally differentiated myocytes. The myogenic lineage colonizes pre-patterned regions to form muscle anlagen as muscle fibers are assembled. The regulatory mechanisms that control the later steps of this myogenic program are not well understood. The homeodomain transcription factor Pitx2 is expressed specifically in the muscle lineage from the migration of precursors to adult muscle. Ablation of Pitx2 results in distortion, rather than loss, of limb muscle anlagen, suggesting that its function becomes critical during the colonization of, and/or fiber assembly in, the anlagen. Microarrays were used to identify changes in gene expression in flow-sorted migratory muscle precursors, labeled by Lbx1(EGFP/+), which resulted from the loss of Pitx2. Very few genes showed changes in expression. Many small-fold, yet significant, changes were observed in genes encoding cytoskeletal and adhesion proteins which play a role in cell motility. Myogenic cells from genetically-tagged mice were cultured and subjected to live cell-tracking analysis using time-lapse imaging. Myogenic cells lacking Pitx2 were smaller, more symmetrical, and had more actin bundling. They also migrated about half of the total distance and velocity. Decreased motility may prevent myogenic cells from filling pre-patterned regions of the limb bud in a timely manner. Altered shape may prevent proper assembly of higher-order fibers within anlagen. Pitx2 therefore appears to regulate muscle anlagen development by appropriately balancing expression of cytoskeletal and adhesion molecules.

Download full-text

Full-text

Available from: Chrissa Kioussi, Jul 28, 2015
0 Followers
 · 
152 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ventrolateral dermomyotome gives rise to all muscles of the limbs through the delamination and migration of cells into the limb buds. These cells proliferate and form myoblasts, withdraw from the cell cycle and become terminally differentiated. The myogenic lineage colonizes pre-patterned regions to form muscle anlagen as muscle fibers are assembled. The regulatory mechanisms that control the later steps of this myogenic program are not well understood. The homeodomain transcription factor Pitx2 is expressed in the muscle lineage from the migration of precursors to adult muscle. Ablation of Pitx2 results in distortion, rather than loss, of limb muscle anlagen, suggesting that its function becomes critical during the colonization of, and/or fiber assembly in, the anlagen. Gene expression arrays were used to identify changes in gene expression in flow-sorted migratory muscle precursors, labeled by Lbx1(EGFP), which resulted from the loss of Pitx2. Target genes of Pitx2 were clustered using the "David Bioinformatics Functional Annotation Tool" to bin genes according to enrichment of gene ontology keywords. This provided a way to both narrow the target genes and identify potential gene families regulated by Pitx2. Representative target genes in the most enriched bins were analyzed for the presence and evolutionary conservation of Pitx2 consensus binding sequence, TAATCY, on the -20kb, intronic, and coding regions of the genes. Fifteen Pitx2 target genes were selected based on the above analysis and were identified as having functions involving cytoskeleton organization, tissue specification, and transcription factors. Data from these studies suggest that Pitx2 acts to regulate cell motility and expression of muscle specific genes in the muscle precursors during forelimb muscle development. This work provides a framework to develop the gene network leading to skeletal muscle development, growth and regeneration.
    Gene 08/2012; 509(1):16-23. DOI:10.1016/j.gene.2012.08.016 · 2.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Determining the migratory and invasive capacity of tumor and stromal cells and clarifying the underlying mechanisms is most relevant for novel strategies in cancer diagnosis, prognosis, drug development and treatment. Here we shortly summarize the different modes of cell travelling and review in vitro methods, which can be used to evaluate migration and invasion. We provide a concise summary of established migration/invasion assays described in the literature, list advantages, limitations and drawbacks, give a tabular overview for convenience and depict the basic principles of the assays graphically. In many cases particular research problems and specific cell types do not leave a choice for a broad variety of usable assays. However, for most standard applications using adherent cells, based on our experience we suggest to use exclusion zone assays to evaluate migration/invasion. We substantiate our choice by demonstrating that the advantages outbalance the drawbacks e.g. the simple setup, the easy readout, the kinetic analysis, the evaluation of cell morphology and the feasibility to perform the assay with standard laboratory equipment. Finally, innovative 3D migration and invasion models including heterotypic cell interactions are discussed. These methods recapitulate the in vivo situation most closely. Results obtained with these assays have already shed new light on cancer cell spreading and potentially will uncover unknown mechanisms.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 08/2012; 752(1). DOI:10.1016/j.mrrev.2012.08.001 · 4.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sequence specific transcription factors (SSTFs) combinatorially define cell types during development by forming recursively linked network kernels. Pitx2 expression begins during gastrulation, together with Hox genes, and becomes localized to the abdominal lateral plate mesoderm (LPM) before the onset of myogenesis in somites. The somatopleure of Pitx2 null embryos begins to grow abnormally outward before muscle regulatory factors (MRFs) or Pitx2 begin expression in the dermomyotome/myotome. Abdominal somites become deformed and stunted as they elongate into the mutant body wall, but maintain normal MRF expression domains. Subsequent loss of abdominal muscles is therefore not due to defects in specification, determination, or commitment of the myogenic lineage. Microarray analysis was used to identify SSTF families whose expression levels change in E10.5 interlimb body wall biopsies. All Hox9-11 paralogs had lower RNA levels in mutants, whereas genes expressed selectively in the hypaxial dermomyotome/myotome and sclerotome had higher RNA levels in mutants. In situ hybridization analyses indicate that Hox gene expression was reduced in parts of the LPM and intermediate mesoderm of mutants. Chromatin occupancy studies conducted on E10.5 interlimb body wall biopsies showed that Pitx2 protein occupied chromatin sites containing conserved bicoid core motifs in the vicinity of Hox 9-11 and MRF genes. Taken together, the data indicate that Pitx2 protein in LPM cells acts, presumably in combination with other SSTFs, to repress gene expression, that are normally expressed in physically adjoining cell types. Pitx2 thereby prevents cells in the interlimb LPM from adopting the stable network kernels that define sclerotomal, dermomyotomal, or myotomal mesenchymal cell types. This mechanism may be viewed either as lineage restriction or specification.
    PLoS ONE 10/2012; 7(7):e42228. DOI:10.1371/journal.pone.0042228 · 3.53 Impact Factor
Show more