Article

Reduced lung function due to biomass smoke exposure in young adults in rural Nepal.

University of Birmingham, UK.
European Respiratory Journal (Impact Factor: 7.13). 05/2012; DOI: 10.1183/09031936.00220511
Source: PubMed

ABSTRACT This study aimed to assess the effects of biomass smoke exposure on lung function in a Nepalese population addressing some of these methodological issues from previous studies.We carried out a cross-sectional study of adults in a population exposed to biomass smoke and a non-exposed population in Nepal. Questionnaire and lung function data were acquired along with direct measures of indoor and outdoor air quality.Ventilatory function (FEV1, FVC, FEF25-75) was significantly reduced in the population using biomass across all age groups compared to the non-biomass using population, even in the youngest (16-25) age group [mean FEV1 (95% CI) 2.65 (2.57-2.73) vs. 2.83 (2.74-2.91), p=0.004]. Airflow obstruction was twice as common among biomass users compared to liquefied petroleum gas users (8.1% vs. 3.6%, p<0.001) with similar patterns for males (7.4% vs. 3.3%, p=0.022) and females (10.8% vs. 3.8%, p<0.001) based on lower limit of normal. Smoking was a major risk factor for airflow obstruction but biomass exposure added to the risk.Exposure to biomass smoke is associated with deficits in lung function, an effect which can be detected as early as late teenage years. Biomass smoke and cigarette smoke have additive adverse effects on airflow obstruction in this setting.

1 Bookmark
 · 
147 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: More than two fifths of the world's population cook with solid fuels and are exposed to household air pollution (HAP). As of now, no studies have assessed whether switching to alternative fuels like biogas could impact cardiovascular health among cooks previously exposed to solid fuel use.Methods We conducted a propensity score matched cross-sectional study to explore if the sustained use of biogas fuel for at least ten years impacts blood pressure among adult female cooks of rural Nepal. We recruited one primary cook ≥30 years of age from each biogas (219 cooks) and firewood (300 cooks) using household and measured their systolic (SBP) and diastolic blood pressure (DBP). Household characteristics, kitchen ventilation and 24-h kitchen carbon monoxide were assessed. We matched cooks by age, body mass index and socio-economic status score using propensity scores and investigated the effect of biogas use through multivariate regression models in two age groups, 30–50 years and >50 years to account for any post-menopausal changes.ResultsWe found substantially reduced 24-h kitchen carbon monoxide levels among biogas-using households. After matching and adjustment for smoking, kitchen characteristics, ventilation status and additional fuel use, the use of biogas was associated with 9.8 mmHg lower SBP [95% confidence interval (CI), −20.4 to 0.8] and 6.5 mmHg lower DBP (95% CI, −12.2 to −0.8) compared to firewood users among women >50 years of age. In this age group, biogas use was also associated with 68% reduced odds [Odds ratio 0.32 (95% CI, 0.14–0.71)] of developing hypertension. These effects, however, were not identified in younger women aged 30–50 years.Conclusions Sustained use of biogas for cooking may protect against cardiovascular disease by lowering the risk of high blood pressure, especially DBP, among older female cooks. These findings need to be confirmed in longitudinal or experimental studies.
    Environmental Research 11/2014; · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Half of the world's population is exposed to household air pollution from biomass burning. This study aimed to assess the relationship between respiratory symptoms and biomass smoke exposure in rural and urban Nepal.
    Environmental Health 11/2014; 13(1):92. · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic obstructive pulmonary disease (COPD) is a major public health problem in India. Although several International guidelines for diagnosis and management of COPD are available, yet there are lot of gaps in recognition and management of COPD in India due to vast differences in availability and affordability of healthcare facilities across the country. The Indian Chest Society (ICS) and the National College of Chest Physicians (NCCP) of India have joined hands to come out with these evidence-based guidelines to help the physicians at all levels of healthcare to diagnose and manage COPD in a scientific manner. Besides the International literature, the Indian studies were specifically analyzed to arrive at simple and practical recommendations. The evidence is presented under these five headings: (a) definitions, epidemiology, and disease burden; (b) disease assessment and diagnosis; (c) pharmacologic management of stable COPD; (d) management of acute exacerbations; and (e) nonpharmacologic and preventive measures. The modified grade system was used for classifying the quality of evidence as 1, 2, 3, or usual practice point (UPP). The strength of recommendation was graded as A or B depending upon the level of evidence.
    Lung India 07/2013; 30(3):228-67.