Article

The therapeutic effects of daphnetin in collagen-induced arthritis involve its regulation of Th17 cells.

Department of Immunology, Medical College of Nanchang University, 461 Nanchang Bayi Road, Nanchang of Jiangxi Province 330006, China.
International immunopharmacology (Impact Factor: 2.21). 04/2012; 13(4):417-23. DOI:10.1016/j.intimp.2012.04.001
Source: PubMed

ABSTRACT Daphne odora var. marginata (D. marginata), an aiophyllus arbuscular plant, is one of the traditional Chinese medicines used to treat rheumatoid arthritis. This study investigated the therapeutic effects and mechanisms of daphnetin, an active monomer ingredient derived from D. marginata, on collagen-induced arthritis (CIA) in rats.
The effects of daphnetin on joint diseases were assessed by hematoxylin and eosin staining and radiographic and transmission electron microscopy. The protein and mRNA expression levels of T helper (Th)1/Th2/Th17-type cytokines in the spleen were determined by flow cytometry and quantitative real-time PCR.
Our results showed that daphnetin significantly reduced paw swelling and was nontoxic in vivo at the tested doses. Synovial hyperplasia, joint destruction and chondrocyte degeneration in CIA rats were suppressed by daphnetin. Daphnetin treatment also reduced the levels of Th1/Th2/Th17 type cytokines in spleen lymphocytes in CIA rats. Moreover, the expression of Foxp3, which can down-regulate the activity of Th17 cells, was significantly increased in the daphnetin-treated groups.
These results suggest that daphnetin may have therapeutic effects in down-regulating Th17-type responses in CIA rats. The beneficial effects of daphnetin on CIA may be related to its inhibition of Th17 cell priming and activation.

0 0
 · 
0 Bookmarks
 · 
54 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Daphnetin (DAP), a coumarin derivative, has been reported to have multiple pharmacological actions including analgesia, antimalarial, anti-arthritic, and anti-pyretic properties. It is unclear whether DAP has neuroprotective effects on ischemic brain injury. In this study, we found that DAP treatment (i.c.v.) reduced the infarct volume at 24 h after ischemia/reperfusion injury and improved neurological behaviors in a middle cerebral artery occlusion mouse model. Moreover, we provided evidences that DAP had protective effects on infarct volume in neonate rats even it was administrated at 4 h after cerebral hypoxia/ischemia injury. To explore its neuroprotective mechanisms of DAP, we examined the protection of DAP on glutamate toxicity-induced cell death in hippocampal HT-22 cells. Our results demonstrated that DAP protected against glutamate toxicity in HT-22 cells in a concentration-dependent manner. Further, we found that DAP maintained the cellular levels of glutathione and superoxide dismutase activity, suggesting the anti-oxidatant activity of DAP. Since DAP has been used for the treatment of coagulation disorder and rheumatoid arthritis for long time with a safety profile, DAP will be a promising agent for the treatment of stroke.
    Neurochemical Research 12/2013; · 2.13 Impact Factor

Lina Tu