Downregulation of Mcl-1 by daunorubicin pretreatment reverses resistance of breast cancer cells to TNF-related apoptosis-inducing ligand

Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 04/2012; 422(1):42-7. DOI: 10.1016/j.bbrc.2012.04.093
Source: PubMed

ABSTRACT The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent. However, tumor cells often develop resistance to TRAIL, limiting its therapeutic potential. To study the mechanism underlying TRAIL-resistance in breast cancer cells, we performed a high-throughput compound screen in MCF-7 cells. We identified daunorubicin as a potent sensitizer of TRAIL-induced apoptosis in MCF-7 cells. Daunorubicin in combination with subtoxic concentrations of recombinant human TRAIL induced massive apoptosis in MCF-7 cells. This combination was effective in TRAIL-resistant MDA-MB-231 and T47D breast cancer cells. By immunoblotting, we found that daunorubicin treatment induced loss of the anti-apoptotic protein, Mcl-1, in breast cancer cells. RNA interference experiments revealed that reduced expression of Mcl-1 sensitized MCF-7 cells to TRAIL. Together, these data suggest that Mcl-1 is a major contributor to TRAIL-resistance in breast cancer cells, and that reduction of Mcl-1 protein levels using DNA damaging agents is a promising approach for cancer therapy.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent, it shows limited efficacy in human pancreatic cancer cells. Protein synthesis inhibition has been reported to sensitize cancer cells to apoptosis-inducing agents, but the detailed mechanism by which protein synthesis inhibition sensitize cells to TRAIL has not been determined. To investigate the mechanism underlying pancreatic cancer cell resistance to TRAIL, we performed a small scale high-throughput compound screening in AsPC-1 pancreatic cancer cells using a bioactive small molecule library. We identified 8 compounds that reproducibly sensitize AsPC-1 cells to TRAIL-induced apoptosis. One of these compounds, emetine hydrochloride, when combined with subtoxic concentrations of TRAIL, induced massive apoptosis in AsPC-1 and BxPC-3 pancreatic cancer cells. Cell death analysis revealed that the sensitizing effects of emetine were specific to TRAIL. Emetine downregulated the expression of the TRAIL-related anti-apoptotic protein Mcl-1 in a dose- and time-dependent manner. Furthermore, specific knockdown of Mcl-1 using small interfering RNA without emetine treatment sensitized pancreatic cancer cells to TRAIL. Emetine sensitization of pancreatic cancer cells to TRAIL via Mcl-1 was confirmed under hypoxic conditions. Taken together, these findings strongly suggest that Mcl-1 is involved in pancreatic cancer cell resistance to TRAIL, and emetine facilitates the apoptosis of TRAIL-tolerant pancreatic cancer cells by specifically inhibiting Mcl-1 function.
    Oncology Reports 11/2013; 31(1). DOI:10.3892/or.2013.2838 · 2.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) binds to its receptors, TRAIL-receptor 1 (TRAIL-R1) and TRAIL-receptor 2 (TRAIL-R2), leading to apoptosis by activation of caspase-8 and the downstream executioner caspases, caspase-3 and caspase-7 (caspase-3/7). Triple-negative breast cancer (TNBC) cell lines with a mesenchymal phenotype are sensitive to TRAIL while other breast cancer cell lines are resistant. The underlying mechanisms that control TRAIL sensitivity in breast cancer cells are not well understood. Here, we performed small interfering RNA (siRNA) screens to identify molecular regulators of the TRAIL pathway in breast cancer cells. We conducted siRNA screens of the human kinome (691 genes), phosphatome (320 genes), and [almost equal to]300 additional genes in the mesenchymal TNBC cell line MB231. Forty-eight hours post-transfection of siRNA, parallel screens measuring caspase-8 activity, caspase-3/7 activity, or cell viability were conducted in the absence or presence of TRAIL for each siRNA relative to a negative control siRNA (siNeg). A subset of genes was screened in cell lines representing epithelial TNBC (MB468), HER2-amplified breast cancer (SKBR3), and estrogen receptor positive breast cancer (T47D). Selected putative negative regulators of the TRAIL pathway were studied using small molecule inhibitors. The primary screens in MB231 identified 150 genes, including 83 kinases, 4 phosphatases, and 63 non-kinases, as potential negative regulators of TRAIL. The identified genes are involved in many critical cell processes including apoptosis, growth factor receptor signaling, cell cycle regulation, transcriptional regulation, and DNA repair. Gene network analysis identified four genes (PDPK1, IKBKB, SRC, and BCL2L1) that formed key nodes within the interaction network of negative regulators. A secondary screen of a subset of the genes identified in additional cell lines representing different breast cancer subtypes and sensitivities to TRAIL validated and extended these findings. Further, we confirmed that small molecule inhibition of SRC or BCL2L1 in combination with TRAIL sensitizes breast cancer cells to TRAIL-induced apoptosis, including cell lines resistant to TRAIL-induced cytotoxicity. These data identify novel molecular regulators of TRAIL-induced apoptosis in breast cancer cells and suggest strategies for the enhanced application of TRAIL as a therapy for breast cancer.
    Breast cancer research: BCR 04/2014; 16(2):R41. DOI:10.1186/bcr3645 · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor family of cytokines. TRAIL selectively induces apoptotic cell death in various tumors and cancer cells, but it has little or no toxicity in normal cells. Agonism of TRAIL receptors has been considered to be a valuable cancer-therapeutic strategy. However, more than 85% of primary tumors are resistant to TRAIL, emphasizing the importance of investigating how to overcome TRAIL resistance. In this report, we have found that nemadipine-A, a cell-permeable L-type calcium channel inhibitor, sensitizes TRAIL-resistant cancer cells to this ligand. Combination treatments using TRAIL with nemadipine-A synergistically induced both the caspase cascade and apoptotic cell death, which were blocked by a pan caspase inhibitor (zVAD) but not by autophagy or a necrosis inhibitor. We further found that nemadipine-A, either alone or in combination with TRAIL, notably reduced the expression of survivin, an inhibitor of the apoptosis protein (IAP) family of proteins. Depletion of survivin by small RNA interference (siRNA) resulted in increased cell death and caspase activation by TRAIL treatment. These results suggest that nemadipine-A potentiates TRAIL-induced apoptosis by down-regulation of survivin expression in TRAIL resistant cells. Thus, combination of TRAIL with nemadipine-A may serve a new therapeutic scheme for the treatment of TRAIL resistant cancer cells, suggesting that a detailed study of this combination would be useful.
    Biomolecules and Therapeutics 01/2013; 21(1):29-34. DOI:10.4062/biomolther.2012.088 · 0.84 Impact Factor