Article

Analysis of Tissues Following Mesenchymal Stromal Cell Therapy in Humans Indicates Limited Long-Term Engraftment and No Ectopic Tissue Formation

Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine
Stem Cells (Impact Factor: 7.7). 07/2012; 30(7):1575-8. DOI: 10.1002/stem.1118
Source: PubMed

ABSTRACT Mesenchymal stromal cells (MSCs) are explored as a novel treatment for a variety of medical conditions. Their fate after infusion is unclear, and long-term safety regarding malignant transformation and ectopic tissue formation has not been addressed in patients. We examined autopsy material from 18 patients who had received human leukocyte antigen (HLA)-mismatched MSCs, and 108 tissue samples from 15 patients were examined by PCR. No signs of ectopic tissue formation or malignant tumors of MSC-donor origin were found on macroscopic or histological examination. MSC donor DNA was detected in one or several tissues including lungs, lymph nodes, and intestine in eight patients at levels from 1/100 to <1/1,000. Detection of MSC donor DNA was negatively correlated with time from infusion to sample collection, as DNA was detected from nine of 13 MSC infusions given within 50 days before sampling but from only two of eight infusions given earlier. There was no correlation between MSC engraftment and treatment response. We conclude that MSCs appear to mediate their function through a "hit and run" mechanism. The lack of sustained engraftment limits the long-term risks of MSC therapy.

0 Followers
 · 
268 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Application of mesenchymal stem/stromal cells (MSCs) in treating different disorders, in particular osteo-articular diseases, is currently under investigation. We have already documented the safety of administrating human adipose tissue-derived stromal MSCs (hASCs) in immunodeficient mice. In the present study, we investigated whether the persistence of MSC is affected by the degree of inflammation and related to the therapeutic effect in two inflammatory models of arthritis. We used C57BL/6 or DBA/1 mice to develop collagenase-induced osteoarthritis (CIOA) or collagen-induced arthritis (CIA), respectively. Normal and diseased mice were administered 2.5×105 hASCs in the knee joints (IA) or 106 in the tail vein (IV). For CIA, clinical scores were monitored during the time course of the disease while for CIOA, OA scores were assessed by histology at euthanasia. Thirteen tissues were recovered at different time points and processed for real-time PCR and Alu sequence detection. Immunological analyses were performed at euthanasia. After IV infusion, no significant difference in the percentage of hASCs was quantified in the lungs of normal and CIA mice at day 1 while no cell was detected at day 10 taking into account the sensitivity of the assay, indicating that a high level of inflammation did not affect the persistence of cells. In CIOA mice, we reported the therapeutic efficacy of hASCs at reducing OA clinical scores at day 42 when hASCs were not detected in the joints. However, the percentage and distribution of hASCs were similar in osteoarthritic and normal mice at day 1 and 10 after implantation indicating that moderate inflammation does not alter hASC persistence in vivo. While inflammatory signals are required for the immunosuppressive function of MSCs, they do not enhance their capacity to survive in vivo, as evaluated in two xenogeneic inflammatory pre-clinical models of arthritis.
    PLoS ONE 01/2015; 10(1):e0114962. DOI:10.1371/journal.pone.0114962 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone marrow-derived mesenchymal stem cells (MSCs) have been identified as one possible strategy for the treatment of chronic obstructive pulmonary disease (COPD). Our previous studies have demonstrated that MSC administration has therapeutic potential in airway inflammation and emphysema via a paracrine mechanism. We proposed that MSCs reverse the inflammatory process and restore impaired lung function through their interaction with macrophages. In our study, the rats were exposed to cigarette smoke (CS), followed by the administration of MSCs into the lungs for 5 weeks. Here we show that MSC administration alleviated airway inflammation and emphysema through the down-regulation of cyclooxygenase-2 (COX-2) and COX-2-mediated prostaglandin E2 (PGE2) production, possibly through the effect on alveolar macrophages. In vitro co-culture experiments provided evidence that MSCs down-regulated COX-2/PGE2 in macrophages through inhibition of the activation-associated phosphorylation of p38 MAPK and ERK. Our data suggest that MSCs may relieve airway inflammation and emphysema in CS-exposed rat models, through the inhibition of COX-2/PGE2 in alveolar macrophages, mediated in part by the p38 MAPK and ERK pathways. This study provides a compelling mechanism for MSC treatment in COPD, in addition to its paracrine mechanism.
    Scientific Reports 03/2015; 5:8733. DOI:10.1038/srep08733 · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell-based therapies have the potential to make a large contribution toward currently unmet patient need and thus effective manufacture of these products is essential. Many challenges must be overcome before this can become a reality and a better definition of the manufacturing requirements for cell-based products must be obtained. The aim of this study is to inform industry and academia of current cell-based therapy clinical development and to identify gaps in their manufacturing requirements. A total of 1342 active cell-based therapy clinical trials have been identified and characterized based on cell type, target indication and trial phase. Multiple technologies have been assessed for the manufacture of these cell types in order to facilitate product translation and future process development.
    Regenerative Medicine 01/2015; 101473(10):49-64. DOI:10.2217/RME.14.73 · 3.50 Impact Factor

Full-text

Download
119 Downloads
Available from
May 29, 2014