Polymorphisms in Toll-like receptor 3 confer natural resistance to human herpes simplex virus type 2 infection.

Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Sweden.
Journal of General Virology (Impact Factor: 3.53). 05/2012; 93(Pt 8):1717-24. DOI: 10.1099/vir.0.042572-0
Source: PubMed

ABSTRACT Lack of Toll-like receptor 3 (TLR3) functional activity predisposes children to human herpesvirus 1 (HSV-1) encephalitis. In this study, we have investigated whether there is any link between TLR3 and adult HSV-2 infection by studying genetic variations in TLR3. The frequency of four single-nucleotide polymorphisms (SNPs) in the TLR3 gene in 239 patients with genital HSV-2 infection and 162 healthy controls, as well as the impact of these variants on TLR3 gene-expression levels, were compared. Two SNPs in the TLR3 gene (rs13126816 and rs3775291) were associated with a reduced incidence of HSV-2 infection. The minor allelic variants at both rs13126816 and rs3775291 were more common among healthy HSV-2-seronegative subjects than among HSV-2-infected individuals. This was even more apparent in HSV-1-seronegative individuals. There was, however, no association between any of the four TLR3 SNPs and HSV-2 disease severity, as they were expressed at similar proportions in asymptomatic and symptomatic HSV-2-infected patients alike. Furthermore, when assessing TLR3 mRNA expression in a limited number of HSV-2-infected individuals, we found that individuals carrying the homozygous genotypes for the minor alleles had significantly higher levels of TLR3 mRNA expression in peripheral blood mononuclear cells in response to HSV-2 stimulation than individuals that were homozygous for the major allele variants. Taken together, these results suggest that genetic variations in TLR3 may affect the susceptibility to HSV-2 infection in humans.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herpes simplex virus type 2 (HSV-2) infects 530million people, is the leading cause of genital ulcer disease, and increases the risk of HIV-1 acquisition. Although several candidate vaccines have been promising in animal models, prophylactic and therapeutic vaccines have not been effective in clinical trials thus far. Negative results from the most recent prophylactic glycoprotein D2 subunit vaccine trial suggest that we must reevaluate our approach to HSV-2 vaccine development. We discuss HSV-2 pathogenesis, immunity, and vaccine efforts to date, as well as the current pipeline of candidate vaccines and design of trials to evaluate new vaccine constructs.
    Vaccine 09/2013; · 3.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toll-like receptors (TLRs) are germ-line-encoded innate immune sensors that recognize conserved microbial structures and host alarmins and signal expression of MHC proteins, costimulatory molecules, and inflammatory mediators by macrophages, neutrophils, dendritic cells, and other cell types. These processes activate immediate and early mechanisms of innate host defense, as well as initiate and orchestrate adaptive immune responses. Several single-nucleotide polymorphisms (SNPs) within the TLR genes have been associated with altered susceptibility to infectious, inflammatory, and allergic diseases, and have been found to play a role in tumorigenesis. Critical advances in our understanding of innate immune functions and genome-wide association studies (GWAS) have uncovered complex interactions of genetic polymorphisms within TLRs and environmental factors. However, conclusions obtained in the course of such analyses are restricted by limited power of many studies that is likely to explain controversial findings. Further, linkages to certain ethnic backgrounds, gender, and the presence of multigenic effects further complicate the interpretations of how the TLR SNPs affect immune responses. For many TLRs, the molecular mechanisms by which SNPs impact receptor functions remain unknown. In this review, I have summarized current knowledge about the TLR polymorphisms, their impact on TLR signaling, and associations with various inflammatory, infectious, allergic diseases and cancers, and discussed the directions of future scientific research.
    Journal of interferon & cytokine research: the official journal of the International Society for Interferon and Cytokine Research 05/2013; · 1.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infection is the leading cause of complication after liver transplantation, causing morbidity and mortality in the first months after surgery. Allograft rejection is mediated through adaptive immunological responses, and thus immunosuppressive therapy is necessary after transplantation. In this setting, the presence of genetic variants of innate immunity receptors may increase the risk of post-transplant infection, in comparison with patients carrying wild-type alleles. Numerous studies have investigated the role of genetic variants of innate immune receptors and the risk of complication after liver transplantation, but their results are discordant. Toll-like receptors and mannose-binding lectin are arguably the most important studied molecules; however, many other receptors could increase the risk of infection after transplantation. In this article, we review the published studies analyzing the impact of genetic variants in the innate immune system on the development of infectious complications after liver transplantation.
    World journal of gastroenterology : WJG. 08/2014; 20(32):11116-11130.