Article

Arsenic and chromium in drinking water promote tumorigenesis in a mouse colitis-associated colorectal cancer model and the potential mechanism is ROS-mediated Wnt/β-catenin signaling pathway.

Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA.
Toxicology and Applied Pharmacology (Impact Factor: 3.98). 04/2012; 262(1):11-21. DOI: 10.1016/j.taap.2012.04.014
Source: PubMed

ABSTRACT Exposure to carcinogenic metals, such as trivalent arsenic [As(III)] and hexavalent chromium [Cr(VI)], through drinking water is a major global public health problem and is associated with various cancers. However, the mechanism of their carcinogenicity remains unclear. In this study, we used azoxymethane/dextran sodium sulfate (AOM/DSS)-induced mouse colitis-associated colorectal cancer model to investigate their tumorigenesis. Our results demonstrate that exposure to As(III) or Cr(VI), alone or in combination, together with AOM/DSS pretreatment has a promotion effect, increasing the colorectal tumor incidence, multiplicity, size, and grade, as well as cell inflammatory response. Two-dimensional differential gel electrophoresis coupled with mass spectrometry revealed that As(III) or Cr(VI) treatment alone significantly changed the density of proteins. The expression of β-catenin and phospho-GSK was increased by treatment of carcinogenic metals alone. Concomitantly, the expression of NADPH oxidase1 (NOX1) and the level of 8-OHdG were also increased by treatment of carcinogenic metals alone. Antioxidant enzymes, such as superoxide dismutase (SOD) and catalase, were decreased. Similarly, in an in vitro system, exposure of CRL-1807 to carcinogenic metals increased reactive oxygen species (ROS) generation, the expression of β-catenin, phospho-GSK, and NOX1. Inhibition of ROS generation by addition of SOD or catalase inhibited β-catenin expression and activity. Our study provides a new animal model to study the carcinogenicity of As(III) and Cr(VI) and suggests that As(III) and Cr(VI) promote colorectal cancer tumorigenesis, at least partly, through ROS-mediated Wnt/β-catenin signaling pathway.

0 Bookmarks
 · 
152 Views
  • Applied Surface Science 10/2013; 283:1024-1031. · 2.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: p, p'-Dichlorodiphenyldichloroethylene (DDE), the major metabolite of Dichlorodiphenyltrichloroethane (DDT), is an organochlorine pollutant and associated with cancer progression. The present study investigated the possible effects of p,p'-DDE on colorectal cancer and the involved molecular mechanism. The results indicated that exposure to low concentrations of p,p'-DDE from 10-10 to 10-7 M for 96 h markedly enhanced proliferations of human colorectal adenocarcinoma cell lines. Moreover, p,p'-DDE exposure could activate Wnt/β-catenin and Hedgehog/Gli1 signaling cascades, and the expression level of c-Myc and cyclin D1 was significantly increased. Consistently, p,p'-DDE-induced cell proliferation along with upregulated c-Myc and cyclin D1 were impeded by β-catenin siRNA or Gli1 siRNA. In addition, p,p'-DDE was able to activate NADPH oxidase, generate reactive oxygen species (ROS) and reduce GSH content, superoxide dismutase (SOD) and calatase (CAT) activities. Treatment with antioxidants prevented p,p'-DDE-induced cell proliferation and signaling pathways of Wnt/β-catenin and Hedgehog/Gli1. These results indicated that p,p'-DDE promoted colorectal cancer cell proliferation through Wnt/β-catenin and Hedgehog/Gli1 signalings mediated by oxidative stress. The finding suggests an association between p,p'-DDE exposure and the risk of colorectal cancer progression.
    PLoS ONE 11/2014; 9(11):e112700. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Green tea (Camellia sinensis; CS) strongly reverses/prevents arsenic-induced apoptotic hepatic degeneration/micronecrosis and mutagenic DNA damage in in vitro oxidant stress model and in rat as shown by comet assay and histoarchitecture (HE and PAS staining) results. Earlier, we demonstrated a link between carcinogenesis and impaired antioxidant system-associated mutagenic DNA damage in arsenic-exposed human. In this study, arsenic-induced (0.6 ppm/100 g body weight/day for 28 days) impairment of cytosolic superoxide-dismutase (SOD1), catalase, xanthine-oxidase, thiol, and urate activities/levels led to increase in tissue levels of damaging malondialdehyde, conjugated dienes, serum necrotic-marker lactate-dehydrogenase, and metabolic inflammatory-marker c-reactive protein suggesting dysregulation at the transcriptional/signal-transduction level. These are decisively restrained by CS-extract (≥10 mg/ml aqueous) with a restoration of DNA/tissue structure. The structural/functional impairment of dialyzed and centrifugally concentrated (6-8 kd cutoff) hepatic SOD1 via its important Cys modifications by H2O2/arsenite redox-stress and that protection by CS/2-mercaptoethanol are shown in in vitro/in situ studies paralleling the present Swiss-Model-generated rSOD1 structural data. Here, arsenite(3+) incubation (≥10(-8) μM + 10 mM H2O2, 2 hr) is shown for the first time with this low-concentration to initiate breakage in rat hepatic-DNA in vitro whereas, arsenite/H2O2/UV-radiation does not affect DNA separately. Arsenic initiates Fe and Cu ion-associated free-radical reaction cascade in vivo. Here, 10 μM of Cu(2+)/Fe(3+)/As(3+) +H2O2-induced in vitro DNA fragmentation is prevented by CS (≥1 mg/ml), greater than the prevention of ascorbate or tocopherol or DMSO or their combination. Moreover, CS incubation for various time with differentially and already degraded DNA resulted from pre-incubation in 10 μM As(3+)-H2O2 system markedly recovers broken DNA. Present results decisively suggest for the first time that CS and its mixed polyphenols have potent SOD1 protecting, diverse radical-scavenging and antimutagenic activities furthering to DNA protection/therapy in arsenic-induced tissue necrosis/apoptosis.
    Journal of Environmental Science and Health Part C Environmental Carcinogenesis & Ecotoxicology Reviews 10/2014; 32(4):338-61. · 3.23 Impact Factor

Full-text

Download
99 Downloads
Available from
May 19, 2014