Article

Assessment of Minimal Residual Disease in Ewing Sarcoma

Division of Pediatric Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
Sarcoma 03/2012; 2012:780129. DOI: 10.1155/2012/780129
Source: PubMed

ABSTRACT Advances in molecular pathology now allow for identification of rare tumor cells in cancer patients. Identification of this minimal residual disease is particularly relevant for Ewing sarcoma, given the potential for recurrence even after complete remission is achieved. Using RT-PCR to detect specific tumor-associated fusion transcripts, otherwise occult tumor cells are found in blood or bone marrow in 20-30% of Ewing sarcoma patients, and their presence is associated with inferior outcomes. Although RT-PCR has excellent sensitivity and specificity for identifying tumor cells, technical challenges may limit its widespread applicability. The use of flow cytometry to identify tumor-specific antigens is a recently described method that may circumvent these difficulties. In this manuscript, we compare the advantages and drawbacks of these approaches, present data on a third method using fluorescent in situ hybridization, and discuss issues affecting the further development of these strategies.

0 Followers
 · 
163 Views
  • Source
    Pediatric Blood & Cancer 10/2014; DOI:10.1002/pbc.25246 · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children. Circulating tumor cells in peripheral blood or disseminated to bone marrow, a concept commonly referred to as minimal residual disease (MRD), are thought to be key to the prediction of metastasis and treatment efficacy. To date, two MRD markers, MYOD and MYOGENIN, have been tested; however, MRD detection continues to be challenging mainly owing to the closeness of the detection limit and the discordance of both markers in some samples. Therefore, the addition of a third marker could be useful for more accurate MRD assessment. The PAX3 gene is expressed during embryo development in all myogenic precursor cells in the dermomyotome. As RMS cells are thought to originate from these muscle precursor cells, they are expected to be positive for PAX3. In this study, PAX3 expression was characterized in cancer cell lines and tumors, showing wide expression in RMS. Detection sensitivities by quantitative polymerase chain reaction (qPCR) of the previously proposed markers, MYOD and MYOGENIN, were similar to that of PAX3, thereby indicating the feasibility of its detection. Interestingly, the flow cytometry experiments supported the usefulness of this technique in the quantification of MRD in RMS using PAX3 as a marker. These results indicate that flow cytometry, albeit in some cases slightly less sensitive, can be considered a good approach for MRD assessment in RMS and more consistent than qPCR, especially owing to its greater specificity. Furthermore, fluorescence-activated cell sorting permits the recovery of cells, thereby providing material for further characterization of circulating or disseminated cancer cells. © 2014 International Society for Advancement of Cytometry
    Cytometry Part A 12/2014; 85(12). DOI:10.1002/cyto.a.22514 · 3.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A goal of the COG Ewing Sarcoma (ES) Biology Committee is enabling identification of reliable biomarkers that can predict treatment response and outcome through the use of prospectively collected tissues and correlative studies in concert with COG therapeutic studies. In this report, we aim to provide a concise review of the most well-characterized prognostic biomarkers in ES, and to provide recommendations concerning design and implementation of future biomarker studies. Of particular interest and potentially high clinical relevance are studies of cell-cycle proteins, sub-clinical disease, and copy number alterations. We discuss findings of particular interest from recent biomarker studies and examine factors important to the success of identifying and validating clinically relevant biomarkers in ES. A number of promising biomarkers have demonstrated prognostic significance in numerous retrospective studies and now need to be validated prospectively in larger cohorts of equivalently treated patients. The eventual goal of refining the discovery and use of clinically relevant biomarkers is the development of patient specific ES therapeutic modalities.
    Frontiers in Oncology 06/2013; 3:141. DOI:10.3389/fonc.2013.00141

Full-text (3 Sources)

Download
50 Downloads
Available from
Jun 4, 2014