Reprioritizing Genetic Associations in Hit Regions Using LASSO-Based Resample Model Averaging

Department of Genetics, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7265, USA.
Genetic Epidemiology (Impact Factor: 2.95). 07/2012; 36(5):451-62. DOI: 10.1002/gepi.21639
Source: PubMed

ABSTRACT Significance testing one SNP at a time has proven useful for identifying genomic regions that harbor variants affecting human disease. But after an initial genome scan has identified a "hit region" of association, single-locus approaches can falter. Local linkage disequilibrium (LD) can make both the number of underlying true signals and their identities ambiguous. Simultaneous modeling of multiple loci should help. However, it is typically applied ad hoc: conditioning on the top SNPs, with limited exploration of the model space and no assessment of how sensitive model choice was to sampling variability. Formal alternatives exist but are seldom used. Bayesian variable selection is coherent but requires specifying a full joint model, including priors on parameters and the model space. Penalized regression methods (e.g., LASSO) appear promising but require calibration, and, once calibrated, lead to a choice of SNPs that can be misleadingly decisive. We present a general method for characterizing uncertainty in model choice that is tailored to reprioritizing SNPs within a hit region under strong LD. Our method, LASSO local automatic regularization resample model averaging (LLARRMA), combines LASSO shrinkage with resample model averaging and multiple imputation, estimating for each SNP the probability that it would be included in a multi-SNP model in alternative realizations of the data. We apply LLARRMA to simulations based on case-control genome-wide association studies data, and find that when there are several causal loci and strong LD, LLARRMA identifies a set of candidates that is enriched for true signals relative to single locus analysis and to the recently proposed method of Stability Selection.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Standard statistical approaches for prioritization of variants for functional testing in fine-mapping studies either use marginal association statistics or estimate posterior probabilities for variants to be causal under simplifying assumptions. Here, we present a probabilistic framework that integrates association strength with functional genomic annotation data to improve accuracy in selecting plausible causal variants for functional validation. A key feature of our approach is that it empirically estimates the contribution of each functional annotation to the trait of interest directly from summary association statistics while allowing for multiple causal variants at any risk locus. We devise efficient algorithms that estimate the parameters of our model across all risk loci to further increase performance. Using simulations starting from the 1000 Genomes data, we find that our framework consistently outperforms the current state-of-the-art fine-mapping methods, reducing the number of variants that need to be selected to capture 90% of the causal variants from an average of 13.3 to 10.4 SNPs per locus (as compared to the next-best performing strategy). Furthermore, we introduce a cost-to-benefit optimization framework for determining the number of variants to be followed up in functional assays and assess its performance using real and simulation data. We validate our findings using a large scale meta-analysis of four blood lipids traits and find that the relative probability for causality is increased for variants in exons and transcription start sites and decreased in repressed genomic regions at the risk loci of these traits. Using these highly predictive, trait-specific functional annotations, we estimate causality probabilities across all traits and variants, reducing the size of the 90% confidence set from an average of 17.5 to 13.5 variants per locus in this data.
    PLoS Genetics 10/2014; 10(10):e1004722. DOI:10.1371/journal.pgen.1004722 · 8.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genomewide association studies (GWAS) sometimes identify loci at which both the number and identities of the underlying causal variants are ambiguous. In such cases, statistical methods that model effects of multiple single-nucleotide polymorphisms (SNPs) simultaneously can help disentangle the observed patterns of association and provide information about how those SNPs could be prioritized for follow-up studies. Current multi-SNP methods, however, tend to assume that SNP effects are well captured by additive genetics; yet when genetic dominance is present, this assumption translates to reduced power and faulty prioritizations. We describe a statistical procedure for prioritizing SNPs at GWAS loci that efficiently models both additive and dominance effects. Our method, LLARRMA-dawg, combines a group LASSO procedure for sparse modeling of multiple SNP effects with a resampling procedure based on fractional observation weights. It estimates for each SNP the robustness of association with the phenotype both to sampling variation and to competing explanations from other SNPs. In producing an SNP prioritization that best identifies underlying true signals, we show the following: our method easily outperforms a single-marker analysis; when additive-only signals are present, our joint model for additive and dominance is equivalent to or only slightly less powerful than modeling additive-only effects; and when dominance signals are present, even in combination with substantial additive effects, our joint model is unequivocally more powerful than a model assuming additivity. We also describe how performance can be improved through calibrated randomized penalization, and discuss how dominance in ungenotyped SNPs can be incorporated through either heterozygote dosage or multiple imputation.
    Genetic Epidemiology 11/2014; 39(2). DOI:10.1002/gepi.21869 · 2.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We consider resequencing studies of associated loci and the problem of prioritizing sequence variants for functional follow-up. Working within the multivariate linear regression framework helps us to account for correlation across variants, and adopting a Bayesian approach naturally leads to posterior probabilities that incorporate all information about the variants' function. We describe two novel prior distributions that facilitate learning the role of each variant by borrowing evidence across phenotypes and across mutations in the same gene. We illustrate their potential advantages with simulations and re-analyzing a dataset of sequencing variants.


Available from