Losartan Attenuates Human Monocyte-derived Dendritic Cell Immune Maturation via Downregulation of Lectin-like Oxidized Low-density Lipoprotein Receptor-1

Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
Journal of cardiovascular pharmacology (Impact Factor: 2.14). 04/2012; 60(2):133-9. DOI: 10.1097/FJC.0b013e318258f336
Source: PubMed

ABSTRACT The angiotensin II receptor-1 blockers have generally been shown to have antiatherogenic effects, and dendritic cells (DCs) are the most efficient antigen presenting cells that play an active role in the development of atherosclerosis through inflammatory-immune responses. Here, we tested the hypothesis that the antiatherogenic effect of losartan, the first angiotensin II receptor-1 blockers, might partly be mediated by attenuating DCs maturation. In this study, we showed that oxidized low-density lipoprotein (oxLDL) and angiotensin II (Ang II) could induce the maturation of human monocyte-derived DCs, stimulate CD83, HLA-DR expressions and IL-12, interferon-gamma secretions and increase the capacity of DCs to stimulate T-cell proliferation, which were suppressed by losartan. OxLDL could promote the autocrine secretion of Ang II by DCs and upregulate the expressions of 3 scavenger receptors SR-A, CD36, and LOX-1. Losartan reduced oxLDL-induced LOX-1 expression but not SR-A and CD36 expressions. Ang II could only upregulate the LOX-1 expression, which was reduced by losartan. OxLDL- and Ang II-induced upregulation of CD83 and secretion of IL-12 were all attenuated by LOX-1 neutralizing antibody. In conclusion, losartan could attenuate the oxLDL- and Ang II-induced immune maturation of human monocyte-derived DCs partly through downregulation of the LOX-1 expression.

83 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thiazolidinediones, the antidiabetic agents such as ciglitazone, has been proved to be effective in limiting atherosclerotic events. However, the underlying mechanism remains elucidative. Ox-LDL receptor-1 (LOX-1) plays a central role in ox-LDL-mediated atherosclerosis via endothelial nitric oxide synthase (eNOS) uncoupling and nitric oxide reduction. Therefore, we tested the hypothesis that ciglitazone, the PPARγ agonist, protected endothelial cells against ox-LDL through regulating eNOS activity and LOX-1 signalling. In the present study, rat microvascular endothelial cells (RMVECs) were stimulated by ox-LDL. The impact of ciglitazone on cell apoptosis and angiogenesis, eNOS expression and phosphorylation, nitric oxide synthesis and related AMPK, Akt and VEGF signalling pathway were observed. Our data showed that both eNOS and Akt phosphorylation, VEGF expression and nitric oxide production were significantly decreased, RMVECs ageing and apoptosis increased after ox-LDL induction for 24 hrs, all of which were effectively reversed by ciglitazone pre-treatment. Meanwhile, phosphorylation of AMP-activated protein kinase (AMPK) was suppressed by ox-LDL, which was also prevented by ciglitazone. Of interest, AMPK inhibition abolished ciglitazone-mediated eNOS function, nitric oxide synthesis and angiogenesis, and increased RMVECs ageing and apoptosis. Further experiments showed that inhibition of PPARγ significantly suppressed AMPK phosphorylation, eNOS expression and nitric oxide production. Ciglitazone-mediated angiogenesis and reduced cell ageing and apoptosis were reversed. Furthermore, LOX-1 protein expression in RMVECs was suppressed by ciglitazone, but re-enhanced by blocking PPARγ or AMPK. Ox-LDL-induced suppression of eNOS and nitric oxide synthesis were largely prevented by silencing LOX-1. Collectively, these data demonstrate that ciglitazone-mediated PPARγ activation suppresses LOX-1 and moderates AMPK/eNOS pathway, which contributes to endothelial cell survival and function preservation.
    Journal of Cellular and Molecular Medicine 11/2014; 19(1). DOI:10.1111/jcmm.12463 · 4.01 Impact Factor