Article

Chronic acetyl-L-carnitine alters brain energy metabolism and increases noradrenaline and serotonin content in healthy mice.

Dept. of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
Neurochemistry International (Impact Factor: 2.65). 04/2012; 61(1):100-7. DOI: 10.1016/j.neuint.2012.04.008
Source: PubMed

ABSTRACT Acetyl-L-carnitine (ALCAR), the short-chain ester of carnitine, is a common dietary supplement readily available in health food stores, claimed to improve energy levels and muscle strength. ALCAR has numerous effects on brain and muscle metabolism, protects against neurotoxic insults and may be an effective treatment for certain forms of depression. However, little is known about the effect of chronic ALCAR supplementation on the brain metabolism of healthy mice. Here, we investigated ALCAR's effect on cerebral energy and neurotransmitter metabolism after supplementing the drinking water of mice with ALCAR for 25 days, providing a daily dose of about 0.5 g/kg. Thereafter the animals were injected with [1-(13)C]glucose, and (13)C incorporation into and levels of various metabolites were quantified in extracts of the hippocampal formation (HF) and cortex using (1)H- and (13)C-nuclear magnetic resonance (NMR) spectroscopy and high performance liquid chromatography (HPLC). Increased glucose levels were detected in both regions together with a decreased amount of [3-(13)C]lactate, but no alterations in incorporation of (13)C derived from [1-(13)C]glucose into the amino acids glutamate, GABA and glutamine. These findings are consistent with decreased metabolism of glucose to lactate but not via the TCA cycle. Higher amounts of the sum of adenosine nucleotides, phosphocreatine and the phosphocreatine/creatine ratio found in the cortex of ALCAR-treated mice are indicative of increased energy levels. Furthermore, ALCAR supplementation increased the levels of the neurotransmitters noradrenaline in the HF and serotonin in cortex, consistent with ALCAR's potential efficacy for depressive symptoms. Other ALCAR-induced changes observed included reduced amounts of GABA in the HF and increased myo-inositol. In conclusion, chronic ALCAR supplementation decreased glucose metabolism to lactate, resulted in increased energy metabolite and altered monoamine neurotransmitter levels in the mouse brain.

0 Bookmarks
 · 
193 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite numerous antidepressants available, many patients with depression do not achieve adequeate response rendering needs for novel antidepressants with different mechanism of actions. Acetyl-L-carnitine (ALC) is a potential antidepressant with novel mechanism of action because of its diverse functions related with neuroplasticity. Animal and cellular models suggest that ALC’s neuroplasiticity effect, membrane modulation, and neurotransmitter regulation may play an important role in treatment of depression. Four randomized clinical studies (RCT) demonstrated the superior efficacy of ALC over placebo (PBO) in patients with depression. Two RCTs showed its superior efficacay over PBO in dysthymic disorder, and 2 other RCTs showed that it is equally effective as fluoxetine and amisulpride in treatment of dysthmic disorder. ALC was also effective in improving depressive symptoms in patients with fibromyalgia and minimal hepatic encephalopathy. It was also found to be equally toletable to PBO and better tolerable than fluoxetine and amisulpride. In conclusion, ALC may be potentially effective and tolerable next treatment option with novel action mechanisms for patients with depression, in particular older population and patients with comorbid medical conditions who are vulnerable to adverse events from antidepressants. However, more clinical trial data with adequately-powered, well-designed and advanced methodology will be mandatory to conclude whether ALC as a monotherpay or augmentation agent may be efficacious and clinically beneficial for depression.
    Journal of Psychiatric Research 06/2014; · 4.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: No comprehensive metabolic profile of trait anxiety is to date available. To identify metabolic biosignatures for different anxiety states, we compared mice selectively inbred for ∼40 generations for high (HAB), normal (NAB) or low (LAB) anxiety-related behavior. Using a mass spectrometry-based targeted metabolomics approach, we quantified the levels of 257 unique metabolites in the cingulate cortex and plasma of HAB, NAB and LAB mice. We then pinpointed affected molecular systems in anxiety-related behavior by an in silico pathway and network prediction analysis followed by validation of in silico predicted alterations with molecular assays. We found distinct metabolic profiles for different trait anxiety states and detected metabolites with altered levels both in cingulate cortex and plasma. Metabolomics data revealed common candidate biomarkers in cingulate cortex and plasma for anxiety traits and in silico pathway analysis implicated amino acid metabolism, pyruvate metabolism, oxidative stress and apoptosis in the regulation of anxiety-related behavior. We report characteristic biosignatures for trait anxiety states and provide a network map of pathways involved in anxiety-related behavior. Pharmacological targeting of these pathways will enable a mechanism-based approach for identifying novel therapeutic targets for anxiety disorders.
    Journal of Psychiatric Research 11/2014; · 4.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aging risk factor for Parkinson's disease is described in terms of specific disease markers including mitochondrial and gene dysfunctions relevant to energy metabolism. This review details evidence for the ability of nutritional agents to manage these aging risk factors. The combination of alpha lipoic acid, acetyl-l-carnitine, coenzyme Q10, and melatonin supports energy metabolism via carbohydrate and fatty acid utilization, assists electron transport and adenosine triphosphate synthesis, counters oxidative and nitrosative stress, and raises defenses against protein misfolding, inflammatory stimuli, iron, and other endogenous or xenobiotic toxins. These effects are supported by gene expression via the antioxidant response element (ARE; Keap/Nrf2 pathway), and by peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1 alpha), a transcription coactivator, which regulates gene expression for energy metabolism and mitochondrial biogenesis, and maintains the structural integrity of mitochondria. The effectiveness and synergies of the combination against disease risks are discussed in relation to gene action, dopamine cell loss, and the accumulation and spread of pathology via misfolded alpha-synuclein. In addition there are potential synergies to support a neurorestorative role via glial derived neurotrophic factor expression.
    Neurobiology of aging 10/2013; · 5.94 Impact Factor

Full-text

Download
31 Downloads
Available from
May 27, 2014