Article

Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation.

Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
Journal of Experimental Medicine (Impact Factor: 13.91). 04/2012; 209(5):903-11. DOI: 10.1084/jem.20112408
Source: PubMed

ABSTRACT Despite a growing understanding of the link between intestinal inflammation and resident gut microbes, longitudinal studies of human flora before initial onset of intestinal inflammation have not been reported. Here, we demonstrate in murine and human recipients of allogeneic bone marrow transplantation (BMT) that intestinal inflammation secondary to graft-versus-host disease (GVHD) is associated with major shifts in the composition of the intestinal microbiota. The microbiota, in turn, can modulate the severity of intestinal inflammation. In mouse models of GVHD, we observed loss of overall diversity and expansion of Lactobacillales and loss of Clostridiales. Eliminating Lactobacillales from the flora of mice before BMT aggravated GVHD, whereas reintroducing the predominant species of Lactobacillus mediated significant protection against GVHD. We then characterized gut flora of patients during onset of intestinal inflammation caused by GVHD and found patterns mirroring those in mice. We also identified increased microbial chaos early after allogeneic BMT as a potential risk factor for subsequent GVHD. Together, these data demonstrate regulation of flora by intestinal inflammation and suggest that flora manipulation may reduce intestinal inflammation and improve outcomes for allogeneic BMT recipients.

0 Followers
 · 
261 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Human gastrointestinal bacteria often share their environment with parasitic worms, allowing physical and physiological interaction between the two groups. Such associations have the potential to affect host health as well as the bacterial and helminth populations. Although still in its early stages, research on the interaction between the microbiome and parasitic helminths in humans offers the potential to improve health by manipulating the microbiome. Previously, supplementation with various nutritional compounds has been found to increase the abundance of potentially beneficial gut commensal bacteria. Thus, nutritional microbiome manipulation to produce an environment which may decrease malnutrition associated with helminth infection and/or aid host recovery from disease is conceivable. This review discusses the influence of the gut microbiota and helminths on host nutrition and immunity and the subsequent effects on the human host's overall health. It also discusses changes occurring in the microbiota upon helminth infections and the underlying mechanisms leading to these changes. There are still significant knowledge gaps which need to be filled before meaningful progress can be made in translating knowledge from studying the human gut microbiome into therapeutic strategies. Ultimately this review aims to discuss our current knowledge as well as highlight areas requiring further investigation.
    Parasitology 06/2014; 141(10):1-17. DOI:10.1017/S0031182014000699 · 2.35 Impact Factor
  • Source
    Medecine sciences: M/S 29(6-7):577-9. DOI:10.1051/medsci/2013296008 · 0.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian intestine harbors trillions of microbes collectively known as the microbiota, which can be viewed as an anaerobic metabolic organ that benefits the host in a number of ways. The homeostasis of this large microbial biomass is a prerequisite to maintaining host health by maximizing symbiotic interrelations and minimizing the risk of living in a close relationship. The cooperation between the innate and adaptive immune systems of the host maintains homeostasis of the microbiota. The dysregulation/alteration of microbiota in various immunodeficiency states including both innate and adaptive deficiency results in metabolic disease. This review examines the influence of microbiota on host metabolic health in immunologically altered mice. Accumulated data from a variety of immune-deficient murine models indicate that altered microbiota can play a key role in origination of metabolic diseases through the following potential mechanisms: (i) increasing calorie extraction resulting in adiposity, (ii) inducing low-grade chronic inflammation in the gut directly or increasing systemic loads of microbial ligands via leaky guts, (iii) generating toxic metabolites from dietary components, and (iv) inducing a switch from pro-metabolic to pro-immune phenotype that drives malabsorption of lipids resulting in muscle wastage and weight loss-particularly upon states of adaptive immune deficiency. Further, these murine models demonstrate that altered microbiota is not purely a consequence of metabolic disease but plays a key role in driving this disorder.
    Advances in Immunology 01/2012; 116:93-112. DOI:10.1016/B978-0-12-394300-2.00003-X · 5.53 Impact Factor