Article

Emerging complexities of APOBEC3G action on immunity and viral fitness during HIV infection and treatment

Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland, Canada.
Retrovirology (Impact Factor: 4.77). 04/2012; 9:35. DOI: 10.1186/1742-4690-9-35
Source: PubMed

ABSTRACT The enzyme APOBEC3G (A3G) mutates the human immunodeficiency virus (HIV) genome by converting deoxycytidine (dC) to deoxyuridine (dU) on minus strand viral DNA during reverse transcription. A3G restricts viral propagation by degrading or incapacitating the coding ability of the HIV genome. Thus, this enzyme has been perceived as an innate immune barrier to viral replication whilst adaptive immunity responses escalate to effective levels. The discovery of A3G less than a decade ago led to the promise of new anti-viral therapies based on manipulation of its cellular expression and/or activity. The rationale for therapeutic approaches has been solidified by demonstration of the effectiveness of A3G in diminishing viral replication in cell culture systems of HIV infection, reports of its mutational footprint in virions from patients, and recognition of its unusually robust enzymatic potential in biochemical studies in vitro. Despite its effectiveness in various experimental systems, numerous recent studies have shown that the ability of A3G to combat HIV in the physiological setting is severely limited. In fact, it has become apparent that its mutational activity may actually enhance viral fitness by accelerating HIV evolution towards the evasion of both anti-viral drugs and the immune system. This body of work suggests that the role of A3G in HIV infection is more complex than heretofore appreciated and supports the hypothesis that HIV has evolved to exploit the action of this host factor. Here we present an overview of recent data that bring to light historical overestimation of A3G's standing as a strictly anti-viral agent. We discuss the limitations of experimental systems used to assess its activities as well as caveats in data interpretation.

0 Bookmarks
 · 
118 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lymphocytic infiltration is associated with a favourable prognosis and predicts response to chemotherapy in many cancer types, including the aggressive triple-negative breast cancer (TNBC). However, it is not well understood owing to the high levels of spatial heterogeneity within tumours, which is difficult to analyse by traditional pathological assessment. This paper describes an unbiased methodology to statistically model the spatial distribution of lymphocytes among tumour cells based on automated analysis of haematoxylin-and-eosin-stained whole-tumour section images, which is applied to two independent TNBC cohorts of 181 patients with matched microarray gene expression data. The novelty of the proposed methodology is the fusion of image analysis and statistical modelling for an integrative understanding of intratumour heterogeneity of lymphocytic infiltration. Using this methodology, a quantitative measure of intratumour lymphocyte ratio is developed and found to be significantly associated with disease-specific survival in both TNBC cohorts independent to standard clinical parameters. The proposed image-based measure compares favourably to a number of gene expression signatures of immune infiltration. In addition, heterogeneous immune infiltration at the morphological level is reflected at the molecular scale and correlated with increased expression of CTLA4, the target of ipilimumab. Taken together, these results support the fusion of high-throughput image analysis and statistical modelling to offer reproducible and robust biomarkers for the objective identification of patients with poor prognosis and treatment options.
    Journal of The Royal Society Interface 02/2015; 12(103). DOI:10.1098/rsif.2014.1153 · 3.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Development of an effective vaccine against HIV-1 is a major challenge for scientists at present. Rapid mutation and replication of the virus in patients contribute to the evolution of the virus, which makes it unconquerable. Hence a deep understanding of critical elements related to HIV-1 is necessary. Errors introduced during DNA synthesis by reverse transcriptase are the primary source of genetic variation within retroviral populations. Numerous current studies have shown that apolipo protein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) proteins mediated sub-lethal mutagenesis of HIV-1 proviral DNA contributes in viral fitness by accelerating human immunodeficiency virus-1 evolution. This results in the loss of the immunity and development of resistance against anti-viral drugs. This review focuses on the latest biological, biochemical, and structural studies in an attempt to discuss current ideas related to mutations initiated by reverse transcriptase and APOBEC3G. It also describes their effect on immunological diversity and retroviral restriction, and their overall effect on the viral genome respectively. A new procedure for eradication of HIV-1 has also been proposed based on the previous studies and proven facts. Citation: Soni RK, Kanampalliwar A, Tiwari A (2013) Role of Reverse Transcriptase and APOBEC3G in Survival of Human Immune Deficiency Virus -1 Genome. Virol Mycol 3: 125. doi:10.4172/2161-0517.1000125 Copyright: © 2013 Soni RK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Due to constitutive expression in cells targeted by human immunodeficiency virus (HIV), and immediate mode of viral restriction upon HIV entry into the host cell, APOBEC3G (A3G) and APOBEC3F (A3F) have been considered primarily as agents of innate immunity. Recent bioinformatic and mouse model studies hint at the possibility that mutation of the HIV genome by these enzymes may also affect adaptive immunity but whether this occurs in HIV-infected individuals has not been examined. We evaluated whether APOBEC-mediated mutations within common HIV CD8+ T cell epitopes can potentially enhance or diminish activation of HIV-specific CD8+ T cells from infected individuals. We compared ex vivo activation of CD8+ T lymphocytes from HIV-infected individuals by wild type HIV peptide epitopes and synthetic variants bearing simulated A3G/F-induced mutations by measuring interferon-γ (IFN-γ) production. We found that A3G/F-induced mutations consistently diminished HIV-specific CD8+ T cell responses against the common epitopes we tested. If this reflects a significant trend in vivo, then adaptation by HIV to enrich sequences that are favored for mutation by A3G/F (A3G/F hotspots) in portions of its genome that encode immunogenic CD8+ T cell epitopes would favor CTL escape. Indeed, we found the most frequently mutated A3G motif (CCC) is enriched up to 6-fold within viral genomic sequences encoding immunodominant CD8+ T cell epitopes in Gag, Pol and Nef. Within each gene, A3G/F hotspots are more abundant in sequences encoding epitopes that are commonly recognized due to their HLA restriction. Thus, in our system, mutations of the HIV genome, mimicking A3G/F activity, appeared to abrogate or severely reduce CTL recognition. We suggest that the physiological significance of this potential effect in facilitating CTL escape is echoed in the adaptation of the HIV genome to enrich A3G/F hotspots in sequences encoding CTL epitopes that are more immunogenic at the population level.
    PLoS ONE 04/2014; 9(4):e93428. DOI:10.1371/journal.pone.0093428 · 3.53 Impact Factor

Preview (2 Sources)

Download
1 Download
Available from