Article

Effect of endoplasmic reticulum stress on inflammation and adiponectin regulation in human adipocytes.

Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
Metabolic syndrome and related disorders (Impact Factor: 1.92). 04/2012; 10(4):297-306. DOI: 10.1089/met.2012.0002
Source: PubMed

ABSTRACT The endoplasmic reticulum (ER) of adipocytes plays a major role in the assembly and secretion of adipokines. The levels of serum adiponectin, secreted by adipocytes, are decreased in insulin resistance, diabetes, and obesity. The role of ER stress in downregulating adiponectin levels has been demonstrated in mouse models of obesity. Studies examining human adipose tissue have indicated that there is an increase in the ER stress transcript HSPA5 with increased body mass index (BMI). However, it is not established whether ER stress results in changes in adiponectin levels or multimerization in human adipocytes. We examined whether the induction of ER stress using tunicamycin, thapsigargin, or palmitate alters the messenger RNA (mRNA) and protein expression of adiponectin and the mRNA expression of chaperones ERP44 and ERO1 in adult-derived human adipocyte stem (ADHAS) cells. ER stress was measured using key indicators of ER stress-HSPA5, ERN1, CHOP, and GADD34, as well as changes in eIF2α phosphorylation. Because ER stress is suggested to be the proximal cause of inflammation in adipocytes, we further examined the change in inflammatory status by quantitating the change in Iκβ-α protein following the induction of ER stress. Our studies indicate that: (1) ER stress markers were increased to a higher degree using tunicamycin or thapsigargin compared to palmitate; (2) ER stress significantly decreased adiponectin mRNA in response to tunicamycin and thapsigargin, but palmitate did not decrease adiponectin mRNA levels. In all three instances, the induction of ER stress was accompanied by a decrease in adiponectin protein as well as adiponectin multimerization. All three inducers of ER stress increased tumor necrosis factor-α (TNF-α) mRNA and decreased Iκβ-α protein in adipocytes. The data suggest that ER stress modifies adiponectin secretion and induces inflammation in ADHAS cells.

Download full-text

Full-text

Available from: Swapan K Das, Jun 19, 2014
0 Followers
 · 
219 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We tested the hypotheses that a) type 2 diabetes increases endoplasmic reticulum (ER) stress response, production of pro-inflammatory cytokines and kidney cell death and b) downregulations of renal indoleamine 2,3-dioxygenase (IDO) and programmed death-1 (PD-1) contribute to exacerbated inflammation and tissue injury. The growth arrest and DNA damage-inducible protein 153 (GADD153; a marker of ER stress response), inflammatory cytokines and cell death were determined in the context of assessment of IDO and PD-1 in an animal model of type 2 diabetic nephropathy (i.e., db/db mouse). Peripheral blood of 4-month-old db/db mice manifested significantly greater percents of interleukin (IL)-17 and IL-23 positive cells in association with greater percents of cells that were positive for PD-1 or GADD153. Compared to kidneys of db/m controls, renal cells prepared from kidneys of db/db mice displayed a) increased percent of cells that were positive for IL-17, IL-23, PD-1 and GADD153, b) decreased JC-1 aggregates but increased JC-1 monomers suggestive of disruption of mitochondrial membrane potential and c) increased apoptotic and necrotic cell death. Immunohistochemical analyses also revealed increased staining of renal tissue of db/db mice for IL-17, IL23, GADD153, Annexin V, caspase 3, PD-1 and IDO compared to db/m kidneys; these changes were generally more prominent in the glomeruli. In conclusion, type 2 diabetes upregulates systemic and local ER stress response and pro-inflammatory mechanisms thereby contributing to renal injury. However, the accompanying upregulations of PD-1 and IDO likely reflect activation of compensatory mechanisms to curtail inflammation and cell injury.
    Experimental and Molecular Pathology 12/2012; 94(2). DOI:10.1016/j.yexmp.2012.11.004 · 2.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adipocytes behave as a rich source of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein 1 (MCP-1). Endoplasmic reticulum (ER) stress in adipocytes can alter adipokines secretion and induce inflammation. The aim of this study is to evaluate the effect of simvastatin on the ox-LDL-induced ER stress and expression and secretion of TNF-α and MCP-1 in 3T3-L1 adipocytes. Differentiated adipocytes were treated with various concentrations of ox-LDL (0 to 100μg/ml) for 24 hours with or without simvastatin pre-treatment. The protein expressions of ER stress markers, glucose-regulated protein 78 (GRP78) and C/EBP homology protein (CHOP), were determined by western blot analysis. The mRNA expressions of TNF-α and MCP-1 were measured by real-time PCR. The protein release of TNF-α and MCP-1 in culture medium were evaluated by ELISA. Ox-LDL treatment led to significant up-regulation of GRP78 and CHOP in dose-dependent manner. The expressions of TNF-α and MCP-1 were dose-dependently increased at mRNA and protein levels after ox-LDL intervention. The effects of ox-LDL on adipocytes were abolished by pre-treatment with 4-phenylbutyrate (4-PBA), a chemical chaperone known to ameliorate ER stress. Simvastatin could inhibit ox-LDL-induced ER stress and reduce the expression of TNF-α and MCP-1 at mRNA and protien level in dose dependent manner. In conclusion, ox-LDL can stimulate the expression and secretion of TNF-α and MCP-1 through its activation of ER stress in adipocytes. Simvastatin might exert direct anti-inflammatory effects in adipocytes through amelioration of ER stress.
    Biochemical and Biophysical Research Communications 01/2013; 432(2). DOI:10.1016/j.bbrc.2013.01.094 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adiponectin directly protects against cardiac remodeling. Despite this beneficial effect, most epidemiological studies have reported a negative relationship between adiponectin level and left ventricular mass index (LVMI). However, a positive relationship has also been reported in subjects at high risk of left ventricular hypertrophy (LVH). Based on these conflicting results, we hypothesized that the relationship between serum adiponectin level and LVMI varies with the risk of LVH. A community-based, cross-sectional study was performed on 1414 subjects. LVMI was measured by echocardiography. Log-transformed adiponectin levels (Log-ADPN) were used for the analysis. Serum adiponectin level had a biphasic distribution (an increase after a decrease) with increasing LVMI. Although Log-ADPN did not correlate with LVMI, Log-ADPN was modestly associated with LVMI in the multivariate analysis (β = 0.079, p = 0.001). The relationship between adiponectin level and LVMI was bidirectional according to the risk of LVH. In normotensive subjects younger than 50 years, Log-ADPN negatively correlated with LVMI (r = -0.204, p = 0.005); however, Log-ADPN positively correlated with LVMI in ≥50-year-old obese subjects with high arterial stiffness (r = 0.189, p = 0.030). The correlation coefficient between Log-ADPN and LVMI gradually changed from negative to positive with increasing risk factors for LVH. The risk of LVH significantly interacted with the relationship between Log-ADPN and LVMI. In the multivariate analysis, Log-ADPN was associated with LVMI in the subjects at risk of LVH; however, Log-ADPN was either not associated or negatively associated with LVMI in subjects at low risk of LVH. Adiponectin level and LVMI are negatively associated in subjects at low risk of LVH and are positively associated in subjects at high risk of LVH. Therefore, the relationship between adiponectin and LVMI varies with the risk of LVH.
    PLoS ONE 07/2013; 8(7):e70246. DOI:10.1371/journal.pone.0070246 · 3.53 Impact Factor