Article

New considerations in the design of clinical trials for amyotrophic lateral sclerosis.

Massachusetts General Hospital, Department of Neurology, Neurology Clinical Trials Unit, 149 Thirteenth Street, Suite 2274, Charlestown, MA 02129, USA.
Clinical investigation 10/2011; 1(10):1375-1389. DOI: 10.4155/cli.11.127
Source: PubMed

ABSTRACT Amyotrophic lateral sclerosis is a devastating neurodegenerative disease caused by loss of motor neurons. Its pathophysiology remains unknown, but progress has been made in understanding its genetic and biochemical basis. Clinical trialists are working to translate basic science successes into human trials with more efficiency, in the hope of finding successful treatments. In the future, new preclinical models, including patient-derived stem cells may augment transgenic animal models as preclinical tools. Biomarker discovery projects aim to identify markers of disease onset and progression for use in clinical trials. New trial designs are reducing study time, improving efficiency and helping to keep pace with the increasing rate of basic and translational discoveries. Ongoing trials with novel designs are paving the way for amyotrophic lateral sclerosis clinical research.

2 Followers
 · 
119 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The last 2 decades have seen a surge in the number of amyotrophic lateral sclerosis (ALS) clinical trials with the hope of finding successful treatments. Clinical trialists aim to repurpose existing drugs and test novel compounds to target potential ALS disease pathophysiology. Recent technological advancements have led to the discovery of new causative genetic agents and modes of delivering potential therapy, calling for increasingly sophisticated trial design. The standard ALS clinical trial design may be modified depending on study needs: type of therapy; route of therapy delivery; phase of therapy development; applicable subpopulation; market availability of therapy; and utility of telemedicine. Novel biomarkers of diagnostic, predictive, prognostic, and pharmacodynamic value are undergoing development and validation for use in clinical trials. Design modifications build on the traditional clinical trial design and may be employed in either the learning or confirming trial phase. Novel designs aim to minimize patient risk, study duration, and sample size, while improving efficiency and promoting statistical power to herald an exciting era for clinical research in ALS.
    Journal of the American Society for Experimental NeuroTherapeutics 02/2015; 12(2). DOI:10.1007/s13311-015-0341-2 · 3.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) exhibits characteristic variability of onset and rate of disease progression, with inherent clinical heterogeneity making disease quantitation difficult. Recent advances in understanding pathogenic mechanisms linked to the development of ALS impose an increasing need to develop strategies to predict and more objectively measure disease progression. This Review explores phenotypic and genetic determinants of disease progression in ALS, and examines established and evolving biomarkers that may contribute to robust measurement in longitudinal clinical studies. With targeted neuroprotective strategies on the horizon, developing efficiencies in clinical trial design may facilitate timely entry of novel treatments into the clinic. ANN NEUROL 2014. © 2014 American Neurological Association
    Annals of Neurology 11/2014; 76(5). DOI:10.1002/ana.24273 · 11.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sporadic amyotrophic lateral sclerosis (ALS) is a fatal disease with unknown etiology, characterized by a progressive loss of motor neurons leading to paralysis and death typically within 3-5 years of onset. Recently, there has been remarkable progress in understanding inherited forms of ALS in which well defined mutations are known to cause the disease. Rodent models in which the superoxide dismutase-1 (SOD1) mutation is overexpressed recapitulate hallmark signs of ALS in patients. Early anatomical changes in mouse models of fALS are seen in the neuromuscular junctions (NMJs) and lower motor neurons, and selective reduction of toxic mutant SOD1 in the spinal cord and muscle of these models has beneficial effects. Therefore, much of ALS research has focused on spinal motor neuron and NMJ aspects of the disease. Here we show that, in the SOD1(G93A) rat model of ALS, spinal motor neuron loss occurs presymptomatically and before degeneration of ventral root axons and denervation of NMJs. Although overt cell death of corticospinal motor neurons does not occur until disease endpoint, we wanted to establish whether the upper motor neuron might still play a critical role in disease progression. Surprisingly, the knockdown of mutant SOD1 in only the motor cortex of presymptomatic SOD1(G93A) rats through targeted delivery of AAV9-SOD1-shRNA resulted in a significant delay of disease onset, expansion of lifespan, enhanced survival of spinal motor neurons, and maintenance of NMJs. This datum suggests an early dysfunction and thus an important role of the upper motor neuron in this animal model of ALS and perhaps patients with the disease. Copyright © 2014 the authors 0270-6474/14/3415587-14$15.00/0.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 11/2014; 34(47):15587-600. DOI:10.1523/JNEUROSCI.2037-14.2014 · 6.75 Impact Factor

Preview

Download
6 Downloads
Available from