Article

Essential role for miR-196a in brown adipogenesis of white fat progenitor cells.

Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Osaka, Japan.
PLoS Biology (Impact Factor: 11.77). 04/2012; 10(4):e1001314. DOI: 10.1371/journal.pbio.1001314
Source: PubMed

ABSTRACT The recent discovery of functional brown adipocytes in adult humans illuminates the potential of these cells in the treatment of obesity and its associated diseases. In rodents, brown adipocyte-like cells are known to be recruited in white adipose tissue (WAT) by cold exposure or β-adrenergic stimulation, but the molecular machinery underlying this phenomenon is not fully understood. Here, we show that inducible brown adipogenesis is mediated by the microRNA miR-196a. We found that miR-196a suppresses the expression of the white-fat gene Hoxc8 post-transcriptionally during the brown adipogenesis of white fat progenitor cells. In mice, miR-196a is induced in the WAT-progenitor cells after cold exposure or β-adrenergic stimulation. The fat-specific forced expression of miR-196a in mice induces the recruitment of brown adipocyte-like cells in WAT. The miR-196a transgenic mice exhibit enhanced energy expenditure and resistance to obesity, indicating the induced brown adipocyte-like cells are metabolically functional. Mechanistically, Hoxc8 targets and represses C/EBPβ, a master switch of brown-fat gene program, in cooperation with histone deacetylase 3 (HDAC3) through the C/EBPβ 3' regulatory sequence. Thus, miR-196a induces functional brown adipocytes in WAT through the suppression of Hoxc8, which functions as a gatekeeper of the inducible brown adipogenesis. The miR-196a-Hoxc8-C/EBPβ signaling pathway may be a therapeutic target for inducing brown adipogenesis to combat obesity and type 2 diabetes.

1 Bookmark
 · 
180 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background. White adipose tissue browning may be a promising strategy to combat obesity. UCP1 is strongly induced in White adipose tissue with β3-adrenergic agonist treatment, but the causes of this increase have not been fully elucidated. This study aims to explore more miRNAs involved in the process of browning of visceral adipose tissue. Methods. Total of fourteen mice were randomly divided into control and study group. Study group mice were injected intraperitoneally with CL316243 once daily for seven days; meanwhile the control group were treated with 0.9% NaCl. After a 7-day period, the expression of genes involved in WAT browning and potential UCP1-targeting miRNAs in adipose tissues was analyzed by qPCR. Results. qPCR analysis revealed that UCP1, DIO2, CIDEA, and CPT1B in epididymal adipose tissue were overexpressed in CL316243 group. Furthermore, potential UCP1-targeting miR-9 and miR-338-3p in epididymal adipose tissue were significantly decreased in CL316243 group. Conclusion. This suggests that potential UCP1-targeting miR-9 and miR-338-3p may be involved in the browning of epididymal adipose tissue by regulating UCP1 gene expression. In this study, we demonstrated that this increase of UCP1 is due, at least in part, to the decreased expression of certain UCP1-targeting miRNAs in epididymal adipose tissue compared to control.
    International Journal of Endocrinology 01/2014; 2014:530636. DOI:10.1155/2014/530636 · 1.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression and, therefore, biological processes in different tissues. A major function of miRNAs in adipose tissue is to stimulate or inhibit the differentiation of adipocytes, and to regulate specific metabolic and endocrine functions. Numerous miRNAs are present in human adipose tissue; however, the expression of only a few is altered in individuals with obesity and type 2 diabetes mellitus or are differentially expressed in various adipose depots. In humans, obesity is associated with chronic low-grade inflammation that is regulated by signal transduction networks, in which miRNAs, either directly or indirectly (through regulatory elements such as transcription factors), influence the expression and secretion of inflammatory proteins. In addition to their diverse effects on signalling, miRNAs and transcription factors can interact to amplify the inflammatory effect. Although additional miRNA signal networks in human adipose tissue are not yet known, similar regulatory circuits have been described in brown adipose tissue in mice. miRNAs can also be secreted from fat cells into the circulation and serve as markers of disturbed adipose tissue function. Given their role in regulating transcriptional networks, miRNAs in adipose tissue might offer tangible targets for treating metabolic disorders.
    Nature Reviews Endocrinology 03/2015; DOI:10.1038/nrendo.2015.25 · 11.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 x 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
    Nature 02/2015; 518(7538-7538):187-96. DOI:10.1038/nature14132 · 42.35 Impact Factor

Full-text (3 Sources)

Download
48 Downloads
Available from
Jun 2, 2014