Genome-wide association study of antibody response to smallpox vaccine

Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA.
Vaccine (Impact Factor: 3.62). 04/2012; 30(28):4182-9. DOI: 10.1016/j.vaccine.2012.04.055
Source: PubMed


We performed a genome-wide association study (GWAS) of antibody levels in a multi-ethnic group of 1071 healthy smallpox vaccine recipients. In Caucasians, the most prominent association was found with promoter SNP rs10489759 in the LOC647132 pseudogene on chromosome 1 (p=7.77×10(-8)). In African-Americans, we identified eight genetic loci at p<5×10(-7). The SNP association with the lowest p-value (rs10508727, p=1.05×10(-10)) was in the Mohawk homeobox (MKX) gene on chromosome 10. Other candidate genes included LOC388460, GPR158, ZHX2, SPIRE1, GREM2, CSMD1, and RUNX1. In Hispanics, the top six associations between genetic variants and antibody levels had p-values less than 5×10(-7), with p=1.78×10(-10) for the strongest statistical association (promoter SNP rs12256830 in the PCDH15 gene). In addition, SNP rs4748153 in the immune response gene PRKCQ (protein kinase C, theta) was significantly associated with neutralizing antibody levels (p=2.51×10(-8)). Additional SNP associations in Hispanics (p≤3.40×10(-7)) were mapped to the KIF6/LOC100131899, CYP2C9, and ANKLE2/GOLGA3 genes. This study has identified candidate SNPs that may be important in regulating humoral immunity to smallpox vaccination. Replication studies, as well as studies elucidating the functional consequences of contributing genes and polymorphisms, are underway.

Download full-text


Available from: Richard B Kennedy,
  • Source
    • "In addition to replicating previously suggested associations to OCB status within the MHC region, our analyses provide evidence for a novel locus to be associated with OCB status, rs9807334 near the ELAC1/SMAD4 genes. The SMAD4 gene, a signal transduction protein in the tumor growth factor beta pathway, has previously been implicated in class switch recombination and in experimental autoimmune encephalomyelitis and multiple sclerosis (Park et al., 2005; Meoli et al., 2010; Huss et al., 2011) and the same allele has previously been suggested as associated with vaccine response (Ovsyannikova et al., 2012). The CSF phenotype association signals in the MHC region we observe have been associated with susceptibility and antibody levels in other diseases. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Immunological hallmarks of multiple sclerosis include the production of antibodies in the central nervous system, expressed as presence of oligoclonal bands and/or an increased immunoglobulin G index-the level of immunoglobulin G in the cerebrospinal fluid compared to serum. However, the underlying differences between oligoclonal band-positive and -negative patients with multiple sclerosis and reasons for variability in immunoglobulin G index are not known. To identify genetic factors influencing the variation in the antibody levels in the cerebrospinal fluid in multiple sclerosis, we have performed a genome-wide association screen in patients collected from nine countries for two traits, presence or absence of oligoclonal bands (n = 3026) and immunoglobulin G index levels (n = 938), followed by a replication in 3891 additional patients. We replicate previously suggested association signals for oligoclonal band status in the major histocompatibility complex region for the rs9271640*A-rs6457617*G haplotype, correlated with HLA-DRB1*1501, and rs34083746*G, correlated with HLA-DQA1*0301 (P comparing two haplotypes = 8.88 x 10-16). Furthermore, we identify a novel association signal of rs9807334, near the ELAC1/SMAD4 genes, for oligoclonal band status (P = 8.45 x 10-7). The previously reported association of the immunoglobulin heavy chain locus with immunoglobulin G index reaches strong evidence for association in this data set (P = 3.79 x 10-37). We identify two novel associations in the major histocompatibility complex region with immunoglobulin G index: the rs9271640*A-rs6457617*G haplotype (P = 1.59 x 10-22), shared with oligoclonal band status, and an additional independent effect of rs6457617*G (P = 3.68 x 10-6). Variants identified in this study account for up to 2-fold differences in the odds of being oligoclonal band positive and 7.75% of the variation in immunoglobulin G index. Both traits are associated with clinical features of disease such as female gender, age at onset and severity. This is the largest study population so far investigated for the genetic influence on antibody levels in the cerebrospinal fluid in multiple sclerosis, including 6950 patients. We confirm that genetic factors underlie these antibody levels and identify both the major histocompatibility complex and immunoglobulin heavy chain region as major determinants.
    Brain 01/2015; 138(3). DOI:10.1093/brain/awu405 · 9.20 Impact Factor
  • Source
    • "Furthermore, a genome-wide association study found a genetic polymorphism in RUNX1 to be associated with the serological response to VACV vaccination (Dryvax vaccine, Wyeth Laboratories) in African-Americans. This suggests that the RUNX1 polymorphism may influence replication and viral gene expression of the live-attenuated vaccine in vivo which causes differences in the strength of the adaptive immune response [58], a hypothesis supported by our identification of RUNX1 as a pro-viral VACV HF. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Vaccinia virus (VACV) is a large, cytoplasmic, double-stranded DNA virus that requires complex interactions with host proteins in order to replicate. To explore these interactions a functional high throughput small interfering RNA (siRNA) screen targeting 6719 druggable cellular genes was undertaken to identify host factors (HF) influencing the replication and spread of an eGFP-tagged VACV. The experimental design incorporated a low multiplicity of infection, thereby enhancing detection of cellular proteins involved in cell-to-cell spread of VACV. The screen revealed 153 pro- and 149 anti-viral HFs that strongly influenced VACV replication. These HFs were investigated further by comparisons with transcriptional profiling data sets and HFs identified in RNAi screens of other viruses. In addition, functional and pathway analysis of the entire screen was carried out to highlight cellular mechanisms involved in VACV replication. This revealed, as anticipated, that many pro-viral HFs are involved in translation of mRNA and, unexpectedly, suggested that a range of proteins involved in cellular transcriptional processes and several DNA repair pathways possess anti-viral activity. Multiple components of the AMPK complex were found to act as pro-viral HFs, while several septins, a group of highly conserved GTP binding proteins with a role in sequestering intracellular bacteria, were identified as strong anti-viral VACV HFs. This screen has identified novel and previously unexplored roles for cellular factors in poxvirus replication. This advancement in our understanding of the VACV life cycle provides a reliable knowledge base for the improvement of poxvirus-based vaccine vectors and development of anti-viral theraputics.
    PLoS ONE 06/2014; 9(6):e98431. DOI:10.1371/journal.pone.0098431 · 3.23 Impact Factor
  • Source
    • "NM_001173482.1) and 13 reported in Ensembl (Flicek et al, 2012; Ovsyannikova et al, 2012 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cereblon, a member of the cullin 4 ring ligase complex (CRL4), is the molecular target of the immunomodulatory drugs (IMiDs) lenalidomide and pomalidomide and is required for the antiproliferative activity of these agents in multiple myeloma (MM) and immunomodulatory activity in T cells. Cereblon's central role as a target of lenalidomide and pomalidomide suggests potential utility as a predictive biomarker of response or resistance to IMiD therapy. Our studies characterized a cereblon monoclonal antibody CRBN65, with high sensitivity and specificity in Western analysis and immunohistochemistry that is superior to commercially available antibodies. We identified multiple cereblon splice variants in both MM cell lines and primary cells, highlighting challenges with conventional gene expression assays given this gene complexity. Using CRBN65 antibody and TaqMan quantitative reverse transcription polymerase chain reaction assays, we showed lack of correlation between cereblon protein and mRNA levels. Furthermore, lack of correlation between cereblon expression in MM cell lines and sensitivity to lenalidomide was shown. In cell lines made resistant to lenalidomide and pomalidomide, cereblon protein is greatly reduced. These studies show limitations to the current approaches of cereblon measurement that rely on commercial reagents and assays. Standardized reagents and validated assays are needed to accurately assess the role of cereblon as a predictive biomarker.
    British Journal of Haematology 10/2013; 164(2). DOI:10.1111/bjh.12622 · 4.71 Impact Factor
Show more