Article

Effects of cue-triggered expectation on cortical processing of taste.

Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.
Neuron (Impact Factor: 15.77). 04/2012; 74(2):410-22. DOI: 10.1016/j.neuron.2012.02.031
Source: PubMed

ABSTRACT Animals are not passive spectators of the sensory world in which they live. In natural conditions they often sense objects on the bases of expectations initiated by predictive cues. Expectation profoundly modulates neural activity by altering the background state of cortical networks and modulating sensory processing. The link between these two effects is not known. Here, we studied how cue-triggered expectation of stimulus availability influences processing of sensory stimuli in the gustatory cortex (GC). We found that expected tastants were coded more rapidly than unexpected stimuli. The faster onset of sensory coding related to anticipatory priming of GC by associative auditory cues. Simultaneous recordings and pharmacological manipulations of GC and basolateral amygdala revealed the role of top-down inputs in mediating the effects of anticipatory cues. Altogether, these data provide a model for how cue-triggered expectation changes the state of sensory cortices to achieve rapid processing of natural stimuli.

0 Bookmarks
 · 
111 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neural responses in many cortical regions encode information relevant to behavior: information that necessarily changes as that behavior changes with learning. Although such responses are reasonably theorized to be related to behavior causation, the true nature of that relationship cannot be clarified by simple learning studies, which show primarily that responses change with experience. Neural activity that truly tracks behavior (as opposed to simply changing with experience) will not only change with learning but also change back when that learning is extinguished. Here, we directly probed for this pattern, recording the activity of ensembles of gustatory cortical single neurons as rats that normally consumed sucrose avidly were trained first to reject it (i.e., conditioned taste aversion learning) and then to enjoy it again (i.e., extinction), all within 49 h. Both learning and extinction altered cortical responses, consistent with the suggestion (based on indirect evidence) that extinction is a novel form of learning. But despite the fact that, as expected, postextinction single-neuron responses did not resemble "naive responses," ensemble response dynamics changed with learning and reverted with extinction: both the speed of stimulus processing and the relationships among ensemble responses to the different stimuli tracked behavioral relevance. These data suggest that population coding is linked to behavior with a fidelity that single-neuron coding is not.
    Journal of Neuroscience 01/2014; 34(4):1248-57. · 6.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Animals actively acquire sensory information from the outside world, with rodents sniffing to smell and whisking to feel. Licking, a rapid motor sequence used for gustation, serves as the primary means of controlling stimulus access to taste receptors in the mouth. Using a novel taste-quality discrimination task in head-restrained mice, we measured and compared reaction times to four basic taste qualities (salt, sour, sweet, and bitter) and found that certain taste qualities are perceived inherently faster than others, driven by the precise biomechanics of licking and functional organization of the peripheral gustatory system. The minimum time required for accurate perception was strongly dependent on taste quality, ranging from the sensory-motor limits of a single lick (salt, ∼100 ms) to several sampling cycles (bitter, >500 ms). Further, disruption of sensory input from the anterior tongue significantly impaired the speed of perception of some taste qualities, with little effect on others. Overall, our results show that active sensing may play an important role in shaping the timing of taste-quality representations and perception in the gustatory system.
    The Journal of neuroscience : the official journal of the Society for Neuroscience. 05/2014; 34(22):7398-411.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian neocortex is composed of a variety of cell types organized in a highly interconnected circuit. GABAergic neurons account for only about 20% of cortical neurons. However, they show widespread connectivity and a high degree of diversity in morphology, location, electrophysiological properties and gene expression. In addition, distinct populations of inhibitory neurons have different sensory response properties, capacities for plasticity and sensitivities to changes in sensory experience. In this review we summarize experimental evidence regarding the properties of GABAergic neurons in primary sensory cortex. We will discuss how distinct GABAergic neurons and different forms of GABAergic inhibitory plasticity may contribute to shaping sensory cortical circuit activity and function.
    Frontiers in Cellular Neuroscience 01/2014; 8:91. · 4.47 Impact Factor

Full-text

Download
1 Download
Available from