Economic Evaluation of Endothelial Keratoplasty Techniques and Penetrating Keratoplasty in The Netherlands

University Eye Clinic, Maastricht University Medical Center, Maastricht, The Netherlands.
American Journal of Ophthalmology (Impact Factor: 3.87). 04/2012; 154(2):272-281.e2. DOI: 10.1016/j.ajo.2012.02.023
Source: PubMed


To evaluate cost-effectiveness of penetrating keratoplasty (PK), femtosecond laser-assisted Descemet stripping endothelial keratoplasty (FS-DSEK), and Descemet stripping automated endothelial keratoplasty (DSAEK).
Cost-effectiveness analysis based on data from a randomized multicenter clinical trial and a noncomparative prospective study.
Data of 118 patients with corneal endothelial dysfunction were analyzed in the economic evaluation. Forty patients were included in the PK group, 36 in the FS-DSEK group, and 42 in the DSAEK group. The primary incremental cost-effectiveness ratio (ICER) was the incremental costs per clinically improved patient, defined as a patient with a combined effectiveness of both a clinically improved BSCVA (defined as an improvement of at least 2 lines) and a clinically acceptable refractive astigmatism (defined as less than or equal to 3.0 diopters). Analysis was based on a 1-year follow-up period after transplantation.
The percentage of treated patients who met the combined effectiveness measures was 52% for DSAEK, 44% for PK, and 43% for FS-DSEK. Mean total costs per patient were €6674 (US$7942), €12 443 (US$14 807), and €7072 (US$8416) in the PK group, FS-DSEK group, and DSAEK group, respectively. FS-DSEK was less effective and more costly compared to both DSAEK and PK. DSAEK was more costly but also more effective compared to PK, resulting in incremental costs of €4975 (US$5920) per additional clinically improved patient.
The results of this study show that FS-DSEK was not cost-effective compared to PK and DSAEK. DSAEK, on the other hand, was more costly but also more effective compared to PK. Including societal costs, a longer follow-up period and preparation of the lamellar transplant buttons in a national cornea bank could improve the cost-effectiveness of DSAEK.

Download full-text


Available from: Frank J H M van den Biggelaar, Apr 07, 2015
1 Follower
20 Reads
  • American Journal of Ophthalmology 08/2012; 154(2):217-8. DOI:10.1016/j.ajo.2012.03.024 · 3.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Approximately 39 million people are blind worldwide, with an estimated 285 million visually impaired. The developing world shoulders 90% of the world's blindness, with 80% of causative diseases being preventable or treatable. Blindness has a major detrimental impact on the patient, community, and healthcare spending. Corneal diseases are significant causes of blindness, affecting at least 4 million people worldwide. The prevalence of corneal disease varies between parts of the world. Trachoma, for instance, is the second leading cause of blindness in Africa, after cataracts, but is rarely found today in developed nations. When preventive strategies have failed, corneal transplantation is the most effective treatment for advanced corneal disease. The major surgical techniques for corneal transplantation include penetrating keratoplasty (PK), anterior lamellar keratoplasty, and endothelial keratoplasty (EK). Indications for corneal transplantation vary between countries, with Fuchs' dystrophy being the leading indication in the USA and keratoconus in Australia. With the exception of the USA, where EK will soon overtake PK as the most common surgical procedure, PK is the overwhelming procedure of choice. Success using corneal grafts in developing nations, such as Nepal, demonstrates the feasibility of corneal transplantation on a global scale. The number of suitable corneas from deceased human donors that becomes available will never be sufficient, and so research into various alternatives, for example stem cells, amniotic membrane transplantation, synthetic and biosynthetic corneas, and xenotransplantation, is progressing. While each of these has potential, we suggest that xenotransplantation holds the greatest potential for a corneal replacement. With the increasing availability of genetically engineered pigs, pig corneas may alleviate the global shortage of corneas in the near future.
    Xenotransplantation 02/2014; 21(2). DOI:10.1111/xen.12082 · 2.84 Impact Factor
  • Xenotransplantation 03/2014; 21(2). DOI:10.1111/xen.12098 · 2.84 Impact Factor
Show more