The Chandra X-ray Survey of Planetary Nebulae (ChanPlaNS): Probing Binarity, Magnetic Fields, and Wind Collisions

The Astronomical Journal (Impact Factor: 4.97). 04/2012; 144(2). DOI: 10.1088/0004-6256/144/2/58
Source: arXiv

ABSTRACT We present an overview of the initial results from the Chandra Planetary
Nebula Survey (ChanPlaNS), the first systematic (volume-limited) Chandra X-ray
Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The
first phase of ChanPlaNS targeted 21 mostly high-excitation PNe within ~1.5 kpc
of Earth, yielding 4 detections of diffuse X-ray emission and 9 detections of
X-ray-luminous point sources at the central stars (CSPNe) of these objects.
Combining these results with those obtained from Chandra archival data for all
(14) other PNe within ~1.5 kpc that have been observed to date, we find an
overall X-ray detection rate of ~70%. Roughly 50% of the PNe observed by
Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing
shocks formed by energetic wind collisions is detected in ~30%; five objects
display both diffuse and point-like emission components. The presence of X-ray
sources appears correlated with PN density structure, in that molecule-poor,
elliptical nebulae are more likely to display X-ray emission (either point-like
or diffuse) than molecule-rich, bipolar or Ring-like nebulae. All but one of
the X-ray point sources detected at CSPNe display X-ray spectra that are harder
than expected from hot (~100 kK) central star photospheres, possibly indicating
a high frequency of binary companions to CSPNe. Other potential explanations
include self-shocking winds or PN mass fallback. Most PNe detected as diffuse
X-ray sources are elliptical nebulae that display a nested shell/halo structure
and bright ansae; the diffuse X-ray emission regions are confined within inner,
sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have
inner shell dynamical ages <~5x10^3 yr, placing firm constraints on the
timescale for strong shocks due to wind interactions in PNe.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We carry out high resolution two-dimensional radiation-hydrodynamic numerical simulations to study the formation and evolution of hot bubbles inside planetary nebulae (PNe). We take into account the evolution of the stellar parameters, wind velocity and mass-loss rate from the final thermal pulses during the asymptotic giant branch (AGB) through to the post-AGB stage for a range of initial stellar masses. The instabilities that form at the interface between the hot bubble and the swept-up AGB wind shell lead to hydrodynamical interactions, photoevaporation flows and opacity variations. We explore the effects of hydrodynamical mixing combined with thermal conduction at this interface on the dynamics, photoionization, and emissivity of our models. We find that even models without thermal conduction mix significant amounts of mass into the hot bubble. When thermal conduction is not included, hot gas can leak through the gaps between clumps and filaments in the broken swept-up AGB shell and this depressurises the bubble. The inclusion of thermal conduction evaporates and heats material from the clumpy shell, which expands to seal the gaps, preventing a loss in bubble pressure. The dynamics of bubbles without conduction is dominated by the thermal pressure of the thick photoionized shell, while for bubbles with thermal conduction it is dominated by the hot, shocked wind.
    Monthly Notices of the Royal Astronomical Society 07/2014; 443(4). · 5.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Asymmetric Planetary Nebulae conference series, now in its sixth edition, aims to resolve the shaping mechanism of PN. Eighty percent of PN have non spherical shapes and during this conference the last nails in the coffin of single stars models for non spherical PN have been put. Binary theories abound but observational tests are lagging. The highlight of APN6 has been the arrival of ALMA which allowed us to measure magnetic fields on AGB stars systematically. AGB star halos, with their spiral patterns are now connected to PPN and PN halos. New models give us hope that binary parameters may be decoded from these images. In the post-AGB and pre-PN evolutionary phase the naked post-AGB stars present us with an increasingly curious puzzle as complexity is added to the phenomenologies of objects in transition between the AGB and the central star regimes. Binary central stars continue to be detected, including the first detection of longer period binaries, however a binary fraction is still at large. Hydro models of binary interactions still fail to give us results, if we make an exception for the wider types of binary interactions. More promise is shown by analytical considerations and models driven by simpler, 1D simulations such as those carried out with the code MESA. Large community efforts have given us more homogeneous datasets which will yield results for years to come. Examples are the ChanPlaN and HerPlaNe collaborations that have been working with the Chandra and Herschel space telescopes, respectively. Finally, the new kid in town is the intermediate-luminosity optical transient, a new class of events that may have contributed to forming several peculiar PN and pre-PN.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most stars that leave the main sequence in a Hubble time will end their lives, evolving through the Asymptotic Giant Branch (AGB), Preplanetary Nebula (PPN) and Planetary Nebula (PN) evolutionary phases. The heavy mass loss which occurs during the AGB phase is important across astrophysics, dramatically changing the course of stellar evolution, dominantly contributing to the dust content of the interstellar medium, and influencing its chemical composition. Yet stellar evolution from the beginning of the AGB phase to the PN phase remains poorly understood, especially the dramatic transformation that occurs in the morphology of the mass-ejecta as AGB stars and their round circumstellar envelopes evolve into mostly PNe, the majority of which deviate strongly from spherical symmetry. In this review, I describe the observations, spanning the wavelength range from X-rays to millimeter wavelengths, that have contributed to our current understanding of the physical processes responsible for the formation of aspherical PNe. I conclude by a brief summary of future observations using current and upcoming facilities such as HST, Chandra, ALMA and JWST that can help in addressing the major unsolved problems in the study of aspherical PNe.

Full-text (2 Sources)

Available from
May 29, 2014