Bacterial contamination of tile drainage water and shallow groundwater under different application methods of liquid swine manure

School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
Canadian Journal of Microbiology (Impact Factor: 1.22). 04/2012; 58(5):668-77. DOI: 10.1139/w2012-038
Source: PubMed


A 2 year field experiment evaluated liquid manure application methods on the movement of manure-borne pathogens (Salmonella sp.) and indicator bacteria (Escherichia coli and Clostridium perfringens) to subsurface water. A combination of application methods including surface application, pre-application tillage, and post-application incorporation were applied in a randomized complete block design on an instrumented field site in spring 2007 and 2008. Tile and shallow groundwater were sampled immediately after manure application and after rainfall events. Bacterial enumeration from water samples showed that the surface-applied manure resulted in the highest concentration of E. coli in tile drainage water. Pre-tillage significantly (p < 0.05) reduced the movement of manure-based E. coli and C. perfringens to tile water and to shallow groundwater within 3 days after manure application (DAM) in 2008 and within 10 DAM in 2007. Pre-tillage also decreased the occurrence of Salmonella sp. in tile water samples. Indicator bacteria and pathogens reached nondetectable levels within 50 DAM. The results suggest that tillage before application of liquid swine manure can minimize the movement of bacteria to tile and groundwater, but is effective only for the drainage events immediately after manure application or initial rainfall-associated drainage flows. Furthermore, the study highlights the strong association between bacterial concentrations in subsurface waters and rainfall timing and volume after manure application.

1 Follower
23 Reads
    • "systems (Dean and Foran, 1992; Oliver et al., 2005; Ball Coelho et al., 2007; Dougherty et al., 2009; Samarajeewa et al., 2012), but monitoring of the vadose zone or groundwater is less common, especially with high-resolution temporal sampling. Some field research focuses on the risk to shallow bedrock groundwater (Levison and Novakowski, 2009; Samarajeewa et al., 2012), but little work has been done at sites with a thick vadose zone overlying bedrock aquifers. On the basis of the research to date, one of the key factors considered in aquifer vulnerability assessments is the thickness and nature of the materials that overlie the water table. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Livestock manure applications on fields can be a source of contamination in water resources, including groundwater. Although fecal indicators like have often been detected in tile drainage systems, few studies have monitored groundwater at depth after manure treatments, especially at sites with a deep, heterogeneous vadose zone. Our hypothesis was that microbial transport through a thick vadose zone would be limited or nonexistent due to attenuation processes, subsurface thickness, and heterogeneity. This study tested this hypothesis by monitoring concentrations beneath a 12-m-thick vadose zone of coarse, heterogeneous glacial sediments after surface application of liquid swine manure. was detected on all 23 sample dates over the 5-mo period (4 Apr. 2012-13 Aug. 2012), with particularly elevated concentrations 1 wk after application and lasting for 5 wk. Variable low-level concentrations before and after the elevated period suggest remobilization and delayed transport of microorganisms to the water table without additional loadings within the flow field. These findings suggest preferential flow pathways allowing deep infiltration of manure bacteria as well as a continued source of bacteria, with variable retention and travel times, over several months. Preferential flow pathways at this site include soil macropores, depression focused infiltration, and pathways related to subsurface heterogeneity and/or fracture flow through finer-grained diamict beds. Further research is needed to confirm the relative contribution of sources, constrain travel times, and define specific transport pathways.
    Journal of Environmental Quality 10/2015; 44(5):1424-1434. DOI:10.2134/jeq2015.02.0067 · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Repetitive element-polymerase chain reaction (REP-PCR) DNA fingerprinting and library-based microbial source tracking (MST) methods were utilized to investigate the potential sources of Escherichia coli pollution in recreational waters of southeastern Lake Huron. In addition to traditional sources such as humans, agriculture, and wildlife, environmentally persistent E. coli isolates were included in the identification library as a separate library unit consisting of the E. coli strains isolated from interstitial water on the beach itself. Our results demonstrated that the dominant source of E. coli pollution of the lake was agriculture, followed by environmentally adapted E. coli strains, wildlife, and then humans. A similar ratio of contributing sources was observed in all samples collected from various locations including the river discharging to the beach in both 2005 and 2006. The high similarity between the compositions of E. coli communities collected simultaneously in the river and in the lake suggests that tributaries were the major overall sources of E. coli to the lake. Our findings also suggest that environmentally adapted strains (EAS) of E. coli should be included as one of the potential sources in future microbial source tracking efforts.
    Canadian Journal of Microbiology 04/2009; 55(3):269-76. DOI:10.1139/w08-123 · 1.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the potential for controlled tile drainage (CD) to reduce bacteria and nutrient loading to surface water and groundwater from fall-season liquid manure application (LMA) on four macroporous clay loam plots, of which two had CD and two had free-draining (FD) tiles. Rhodamine WT (RWT) was mixed into the manure and monitored in the tile water and groundwater following LMA. Tile water and groundwater quality were influenced by drainage management. Following LMA on the FD plots, RWT, nutrients, and bacteria moved rapidly via tiles to surface water; at the CD plots, tiles did not flow until the first post-LMA rainfall, so the immediate risk of LMA-induced contamination of surface water was abated. During the 36-d monitoring period, flow-weighted average specific conductance, redox potential, and turbidity, as well as total Kjeldahl N (TKN), total P (TP), NH-N, reactive P, and RWT concentrations, were higher in the CD tile effluent; however, because of lower tile discharge from the CD plots, there was no significant ( ≤ 0.05) difference in surface water nutrient and RWT loading between the CD and FD plots when all tiles were flowing. The TKN, TP, and RWT concentrations in groundwater also tended to be higher at the CD plots. Bacteria behaved differently than nutrients and RWT, with no significant difference in total coliform, , fecal coliform, fecal streptococcus, and concentrations between the CD and FD tile effluent; however, for all but , hourly loading was higher from the FD plots. Results indicate that CD has potential for mitigating bacteria movement to surface water.
    Journal of Environmental Quality 05/2013; 42(3):881-892. DOI:10.2134/jeq2012.0261 · 2.65 Impact Factor
Show more