Article

Dasatinib as a bone-modifying agent: anabolic and anti-resorptive effects.

Centro de Investigación del Cáncer, IBMCC, Universidad de Salamanca-CSIC, Salamanca, Spain.
PLoS ONE (Impact Factor: 3.53). 01/2012; 7(4):e34914. DOI: 10.1371/journal.pone.0034914
Source: PubMed

ABSTRACT Bone loss, in malignant or non-malignant diseases, is caused by increased osteoclast resorption and/or reduced osteoblast bone formation, and is commonly associated with skeletal complications. Thus, there is a need to identify new agents capable of influencing bone remodeling. We aimed to further pre-clinically evaluate the effects of dasatinib (BMS-354825), a multitargeted tyrosine kinase inhibitor, on osteoblast and osteoclast differentiation and function.
For studies on osteoblasts, primary human bone marrow mensenchymal stem cells (hMSCs) together with the hMSC-TERT and the MG-63 cell lines were employed. Osteoclasts were generated from peripheral blood mononuclear cells (PBMC) of healthy volunteers. Skeletally-immature CD1 mice were used in the in vivo model.
Dasatinib inhibited the platelet derived growth factor receptor-β (PDGFR-β), c-Src and c-Kit phosphorylation in hMSC-TERT and MG-63 cell lines, which was associated with decreased cell proliferation and activation of canonical Wnt signaling. Treatment of MSCs from healthy donors, but also from multiple myeloma patients with low doses of dasatinib (2-5 nM), promoted its osteogenic differentiation and matrix mineralization. The bone anabolic effect of dasatinib was also observed in vivo by targeting endogenous osteoprogenitors, as assessed by elevated serum levels of bone formation markers, and increased trabecular microarchitecture and number of osteoblast-like cells. By in vitro exposure of hemopoietic progenitors to a similar range of dasatinib concentrations (1-2 nM), novel biological sequelae relative to inhibition of osteoclast formation and resorptive function were identified, including F-actin ring disruption, reduced levels of c-Fos and of nuclear factor of activated T cells 1 (NFATc1) in the nucleus, together with lowered cathepsin K, αVβ3 integrin and CCR1 expression.
Low dasatinib concentrations show convergent bone anabolic and reduced bone resorption effects, which suggests its potential use for the treatment of bone diseases such as osteoporosis, osteolytic bone metastasis and myeloma bone disease.

0 Bookmarks
 · 
239 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteasome inhibitors (PIs), namely bortezomib, have become a cornerstone therapy for multiple myeloma (MM), potently reducing tumor burden and inhibiting pathologic bone destruction. In clinical trials, carfilzomib, a next generation epoxyketone-based irreversible PI, has exhibited potent anti-myeloma efficacy and decreased side effects compared with bortezomib. Carfilzomib and its orally bioavailable analog oprozomib, effectively decreased MM cell viability following continual or transient treatment mimicking in vivo pharmacokinetics. Interactions between myeloma cells and the bone marrow (BM) microenvironment augment the number and activity of bone-resorbing osteoclasts (OCs) while inhibiting bone-forming osteoblasts (OBs), resulting in increased tumor growth and osteolytic lesions. At clinically relevant concentrations, carfilzomib and oprozomib directly inhibited OC formation and bone resorption in vitro, while enhancing osteogenic differentiation and matrix mineralization. Accordingly, carfilzomib and oprozomib increased trabecular bone volume, decreased bone resorption and enhanced bone formation in non-tumor bearing mice. Finally, in mouse models of disseminated MM, the epoxyketone-based PIs decreased murine 5TGM1 and human RPMI-8226 tumor burden and prevented bone loss. These data demonstrate that, in addition to anti-myeloma properties, carfilzomib and oprozomib effectively shift the bone microenvironment from a catabolic to an anabolic state and, similar to bortezomib, may decrease skeletal complications of MM.Leukemia advance online publication, 27 July 2012; doi:10.1038/leu.2012.183.
    Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 07/2012; · 10.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cancer treatment-related bone loss has become growing problematic, especially in breast and prostate cancer treated with hormone/endocrine therapy, chemotherapy and radiotherapy. However, bone loss caused by targeted therapy in cancer patients is largely unknown yet. In present study, a kinase inhibitors screen was applied for MC3T3-E1, a murine osteoprogenitor cell line, and seven kinase inhibitors (GSK1838705A, PF-04691502, Dasatinib, Masitinib, GDC-0941, XL880 and Everolimus) were found to suppress the cell viability with dose- and time-dependent manner. The most interesting is that many kinase inhibitors (such as lapatinib, erlotinib and sunitinib) can promote MC3T3-E1 cell proliferation at 0.01 μM. 4 out of 7 inhibitors were selected to perform the functional study and found that they lead to cell cycle dysregulation, treatments of PF-04691502 (AKT inhibitor), Dasatinib (Src inhibitor) and Everolimus (mTOR inhibitor) lead to G1 arrest of MC3T3-E1 cells via downregulation of cyclin D1 and p-AKT, whereas XL880 (MET and VEGFR inhibitor) treatment results in increase of sub-G1 and G2/M phase by upregulation of p53 protein. Our work provides important indications for the comprehensive care of cancer patients treated with some targeted drugs.
    International journal of clinical and experimental pathology 01/2013; 6(10):2082-91. · 2.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteoporotic fractures are an important public health problem with significant individual and societal costs. In addition to the major risk factors for osteoporotic fracture: low bone mineral density (BMD), age, low body weight, and history of fracture or falls, some drugs are now considered to be important secondary risk factor for bone loss and fracture, particularly amongst predisposed individuals. Currently available data are often generated from small observational clinical studies, making risk assessment and development of management guidelines difficult. In many cases, the exposed population has a low baseline risk for fracture and additional assessment and treatment may not be necessary. In this review we focus on drugs other than glucocorticoids identified as potentially causing adverse skeletal effects, summarising the existing evidence from preclinical and clinical studies, and suggest recommendations for patient management.This article is protected by copyright. All rights reserved.
    Clinical Endocrinology 07/2014; · 3.40 Impact Factor

Full-text (2 Sources)

View
55 Downloads
Available from
May 17, 2014