Mitochondrial tRNA mutations associated with deafness

Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical College, Wenzhou, Zhejiang, China.
Mitochondrion (Impact Factor: 3.52). 04/2012; 12(3):406-13. DOI: 10.1016/j.mito.2012.04.001
Source: PubMed

ABSTRACT Mitochondrial tRNA mutations are one of the important causes of both syndromic and non-syndromic deafness. Of those, syndromic deafness-associated tRNA mutations such as tRNA(Leu(UUR)) 3243A>G are often present in heteroplasmy, while non-syndromic deafness-associated tRNA mutations including tRNA(Ser(UCN)) 7445A>G often occur in homplasmy or in high levels of heteroplasmy. These tRNA mutations are the primary mutations leading to hearing loss. However, other tRNA mutations such as tRNA(Thr) 15927G>A and tRNA(Ser(UCN)) 7444G>A may act in synergy with the primary mitochondrial DNA mutations, modulating the phenotypic manifestation of the primary mitochondrial DNA mutations. Theses tRNA mutations cause structural and functional alteration. A failure in tRNA metabolism caused by these tRNA mutations impaired mitochondrial translation and respiration, thereby causing mitochondrial dysfunctions responsible for deafness. These data offer valuable information for the early diagnosis, management and treatment of maternally inherited deafness.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: The m.7510T>C mitochondrial DNA (mtDNA) mutation is a tRNA(Ser(UCN)) alteration leading to matrilineal isolated hearing impairment. The current paper reviews the available reports on the m.7510T>C mtDNA mutation, with special attention to phenotypic variations and haplogroup background. A Hungarian family, the fourth family reported in the literature, is presented, in which analysis of three generations with bilateral isolated hearing loss revealed the m.7510T>C tRNA(Ser(UCN)) mutation in homoplasmic form in the affected members. Haplogroup analysis verified an unnamed subgroup of mitochondrial haplogroup H. Previously reported Spanish and North American Caucasian families belong to different subgroups of haplogroup H. Analyzing our biobank of Hungarian patients with sensorineural hearing loss, we did not detect this mutation in any other patient, nor was it found in Caucasian haplogroup H control samples. Comparing the cases reported so far, there is interfamilial variablity in the age of onset, accompanying symptoms, and haplogroup background. Our case adds further genetic evidence for the pathogenicity of the m.7510T>C mutation and underlines the need to include full mtDNA sequencing in the screening for unexplained hearing loss.
    01/2013; 9:105-11. DOI:10.1007/8904_2012_187
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objectives To characterize mitochondrial sequence variants present in a nationwide hereditary deafness DNA repository of samples from deaf subjects and to define the clinical presentation and audiometric characteristics of individuals with a mitochondrial sequence variant.Study DesignRetrospective review of results for select mitochondrial mutations performed on DNA samples from subjects compiled from 1997 to 2009.SettingNational hereditary deafness DNA repository.Subjects and Methods Available samples from subjects in the repository were screened to identify those with mitochondrial sequence variants. Clinical data on the nature of mutation, type and severity of the hearing loss, and sex, age at diagnosis, family history of hearing loss, and ethnicity were analyzed.ResultsEighty-six patients were identified with mitochondrial mutations or 3.5% of the subjects studied. Among those with mitochondrial mutations, 21 (24.4%) had the m.7445A>G substitution, 18 (20.9%) had the m.1555A>G substitution, 18 (20.9%) had the m.961T>G substitution, and 29 (33.7%) had a m.961delT+C(n) complex deletion. The majority of patients had bilateral severe to profound hearing loss. Fifty-three (62%) patients were female, and a family history of hearing loss was documented in 66 (76.7%) patients. The deafness was recognized prior to 3 years of age in 26 patients.Conclusion Mitochondrial deafness in this sample was associated with a variety of genetic mutations and a wide spectrum of clinical presentations. Because of increased aminoglycoside susceptibility associated with some forms of mitochondrial deafness, matrilineal relatives may be at risk in those cases, highlighting the importance of making an accurate diagnosis prior to exposure.
    Otolaryngology Head and Neck Surgery 03/2013; 149(5). DOI:10.1177/0194599813482705 · 1.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Considerable progress has been made recently toward understanding the processes of mitochondrial DNA (mtDNA) damage and repair. However, a paucity of information still exists regarding the physiological effects of persistent mtDNA damage. This is due, in part, to experimental difficulties associated with targeting mtDNA for damage, while sparing nuclear DNA. Here, we characterize two systems designed for targeted mtDNA damage based on the inducible (Tet-ON) mitochondrial expression of the bacterial enzyme, exonuclease III, and the human enzyme, uracil-N-glyosylase containing the Y147A mutation. In both systems, damage was accompanied by degradation of mtDNA, which was detectable by 6h after induction of mutant uracil-N-glycosylase and by 12h after induction of exoIII. Unexpectedly, increases in the steady-state levels of single-strand lesions, which led to degradation, were small in absolute terms indicating that both abasic sites and single-strand gaps may be poorly tolerated in mtDNA. mtDNA degradation was accompanied by the loss of expression of mtDNA-encoded COX2. After withdrawal of the inducer, recovery from mtDNA depletion occurred faster in the system expressing exonuclease III, but in both systems reduced mtDNA levels persisted longer than 144h after doxycycline withdrawal. mtDNA degradation was followed by reduction and loss of respiration, decreased membrane potential, reduced cell viability, reduced intrinsic reactive oxygen species production, slowed proliferation, and changes in mitochondrial morphology (fragmentation of the mitochondrial network, rounding and "foaming" of the mitochondria). The mutagenic effects of abasic sites in mtDNA were low, which indicates that damaged mtDNA molecules may be degraded if not rapidly repaired. This study establishes, for the first time, that mtDNA degradation can be a direct and immediate consequence of persistent mtDNA damage and that increased ROS production is not an invariant consequence of mtDNA damage.
    DNA repair 05/2013; DOI:10.1016/j.dnarep.2013.04.023 · 3.36 Impact Factor