Article

Intrinsic fibrillation of fast-acting insulin analogs.

BD Technologies, Durham, North Carolina 27709, USA.
Journal of diabetes science and technology 03/2012; 6(2):265-76. DOI: 10.1177/193229681200600209
Source: PubMed

ABSTRACT Aggregation of insulin into insoluble fibrils (fibrillation) may lead to complications for diabetes patients such as reduced insulin potency, occlusion of insulin delivery devices, or potentially increased immunological potential. Even after extensive investigation of fibril formation in regular human insulin, there are little published data about the intrinsic fibrillation of fast-acting analogs. This article investigates and compares the intrinsic fibrillation of three fast-acting insulin analogs--lispro, aspart, and glulisine--as a function of their primary protein structure and exclusive of the stabilizing excipients that are added to their respective commercial formulations.
The insulin analogs underwent a buffer exchange into phosphate-buffered saline to remove formulation excipients and then were heated and agitated to characterize intrinsic fibrillation potentials devoid of excipient stabilizing effects. Different analytical methods were used to determine the amount of intrinsic fibrillation for the analogs. After initial lag times, intrinsic fibrillation was detected by an amyloid-specific stain. Precipitation of insulin was confirmed by ultraviolet analysis of soluble insulin and gravimetric measurement of insoluble insulin. Electron microscopy showed dense fibrous material, with individual fibrils that are shorter than typical insulin fibrils. Higher resolution kinetic analyses were carried out in 96-well plates to provide more accurate measures of lag times and fibril growth rates.
All three analogs exhibited longer lag times and slower intrinsic fibrillation rates than human insulin, with glulisine and lispro rates slower than aspart. This is the first study comparing the intrinsic fibrillation of fast-acting insulin analogs without the stabilizing excipients found in their commercial formulations.
Data show different intrinsic fibrillation potentials based on primary molecular structures when the formulation excipients that are critical for stability are absent. Understanding intrinsic fibrillation potential is critical for evaluating insulin analog stability and device compatibility.

0 Bookmarks
 · 
147 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lag period is an inherent characteristic of the kinetic curves registered for protein aggregation. The appearance of a lag period is connected with the nucleation stage and the stages of the formation of folding or unfolding intermediates prone to aggregation (for example, the stage of protein unfolding under stress conditions). Discovering the kinetic regularities essential for elucidation of the protein aggregation mechanism comprises deducing the relationship between the lag period and aggregation rate. Frändrich proposed the following equation connecting the duration of the lag phase (tlag) and the aggregate growth rate (kg) in the amyloid fibrillation: kg=const/tlag. To establish the relationship between the initial rate of protein aggregation (v) and the lag period (t0) in the case of amorphous aggregation, the kinetics of dithithreitol-induced aggregation of holo-α-lactalbumin from bovine milk was studied (0.1M Na-phosphate buffer, pH 6.8; 37°C). The order of aggregation with respect to protein (n) was calculated from the dependence of the initial rate of protein aggregation on the α-lactalbumin concentration (n=5.3). The following equation connecting v and t0 has been proposed: v(1/n)=const/(t0 - t0,lim), where t0,lim is the limiting value of t0 at high concentrations of the protein.
    International journal of biological macromolecules 04/2014; · 2.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The stability of three commercial "fast-acting" insulin analogs, insulin lispro, insulin aspart, and insulin glulisine, was studied at various concentrations of phenolic preservatives (phenol and/or meta-cresol) during 9 days of incubation at 37°C. The analysis by both size-exclusion and reversed-phase chromatography showed degradation of lispro and aspart that was inversely dependent on the concentration of phenolic preservatives. Insulin glulisine was much more stable than the other analogs and showed minimal degradation even in the absence of phenolic preservatives. With sedimentation velocity ultracentrifugation, we determined the preservatives' effect on the insulins' self-assembly. When depleted of preservatives, insulin glulisine dissociates from higher molecular weight species into a number of intermediate molecular weight species, in between monomer and hexamer, whereas insulin aspart and insulin lispro dissociate into monomers and dimers. Decreased stability of insulin lispro and insulin aspart seems to be because of the extent of dissociation when depleted of preservative. Insulin glulisine's dissociation to intermediate molecular weight species appears to help minimize its degradation during incubation at 37°C. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci.
    Journal of Pharmaceutical Sciences 06/2014; · 3.13 Impact Factor

Full-text

View
2 Downloads
Available from