Article

Zebrafish sox9b is crucial for hepatopancreatic duct development and pancreatic endocrine cell regeneration.

Unit of Molecular Biology and Genetic Engineering, Giga-Research, University of Liège, 1 avenue de l'Hôpital B34, B-4000 Sart-Tilman, Belgium.
Developmental Biology (Impact Factor: 3.87). 04/2012; 366(2):268-78. DOI: 10.1016/j.ydbio.2012.04.002
Source: PubMed

ABSTRACT Recent zebrafish studies have shown that the late appearing pancreatic endocrine cells are derived from pancreatic ducts but the regulatory factors involved are still largely unknown. Here, we show that the zebrafish sox9b gene is expressed in pancreatic ducts where it labels the pancreatic Notch-responsive cells previously shown to be progenitors. Inactivation of sox9b disturbs duct formation and impairs regeneration of beta cells from these ducts in larvae. sox9b expression in the midtrunk endoderm appears at the junction of the hepatic and ventral pancreatic buds and, by the end of embryogenesis, labels the hepatopancreatic ductal system as well as the intrapancreatic and intrahepatic ducts. Ductal morphogenesis and differentiation are specifically disrupted in sox9b mutants, with the dysmorphic hepatopancreatic ducts containing misdifferentiated hepatocyte-like and pancreatic-like cells. We also show that maintenance of sox9b expression in the extrapancreatic and intrapancreatic ducts requires FGF and Notch activity, respectively, both pathways known to prevent excessive endocrine differentiation in these ducts. Furthermore, beta cell recovery after specific ablation is severely compromised in sox9b mutant larvae. Our data position sox9b as a key player in the generation of secondary endocrine cells deriving from pancreatic ducts in zebrafish.

0 Bookmarks
 · 
137 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aldh1 expression is known to mark candidate progenitor populations in adult and embryonic mouse pancreas, and Aldh1 enzymatic activity has been identified as a potent regulator of pancreatic endocrine differentiation in zebrafish. However, the location and identity of Aldh1-expressing cells in zebrafish pancreas remain unknown. In this study we demonstrate that Aldh1-expressing cells are located immediately adjacent to 2F11-positive pancreatic ductal epithelial cells, and that their abundance dramatically increases during zebrafish secondary islet formation. These cells also express neurod, a marker of endocrine progenitor cells, but do not express markers of more mature endocrine cells such as pax6b or insulin. Using formal cre/lox-based lineage tracing, we further show that Aldh1-expressing pancreatic epithelial cells are the direct progeny of pancreatic notch-responsive progenitor cells, identifying them as a critical intermediate between multi-lineage progenitors and mature endocrine cells. Pharmacologic manipulation of Aldh1 enzymatic activity accelerates cell entry into the Aldh1-expressing endocrine progenitor pool, and also leads to the premature maturation of these cells, as evidenced by accelerated pax6b expression. Together, these findings suggest that Aldh1-expressing cells act as both participants and regulators of endocrine differentiation during zebrafish secondary islet formation.
    PLoS ONE 01/2013; 8(9):e74350. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic adenocarcinoma, one of the worst malignancies of exocrine pancreas, is a solid tumor with increasing incidence and mortality in industrialized countries. It is usually driven by oncogenic Kras point mutations and evolves into a highly aggressive metastatic carcinoma due to secondary gene mutations and specific signaling pathways unbalance. To examine in vivo the effects of Kras(G12D) during pancreatic cancer progression and time correlation with cancer signaling pathways activities, we have generated a zebrafish model of Pancreatic adenocarcinoma in which eGFP-Kras(G12D) expression was specifically driven to the pancreatic tissue by using the GAL4/UAS conditional expression system. Outcrossing the inducible oncogenic Kras(G12D) line with transgenic zebrafish reporters harboring specific signaling responsive elements of transcriptional effectors, we were able to follow TGFβ, Notch, Bmp and Shh activities during tumor development. Zebrafish transgenic lines expressing eGFP-Kras(G12D) showed normal exocrine pancreas development till 3 weeks post fertilization (wpf). From 4 to 24 wpf we observed several degree of acinar lesions, characterized by an increase of mesenchymal cells and mixed acinar/ductal features followed by progressive bowel and liver infiltrations finally bringing to highly aggressive carcinoma. Moreover, live imaging analysis of the exocrine pancreatic tissue revealed an increasing number of Kras positive cells and progressive activation of TGFβ; and Notch pathways. Increase of TGFβ, following Kras(G12D) activation, was confirmed in a concomitant model of medulloblastoma (MDB). Notch and Shh signaling activities during tumor onset were different between MDB and pancreatic adenocarcinoma indicating a tissue specific regulation of cell signaling pathways. Moreover, our results shows that a living model of pancreatic adenocarcinoma joined with cell signaling reporters is a suitable tool to describe in vivo the signaling cascades and molecular mechanisms involved in tumor development and a potential platform to screen for novel oncostatic drugs.
    Disease Models and Mechanisms 05/2014; · 4.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NEUROG3 is a key regulator of pancreatic endocrine cell differentiation in mouse, essential for the generation of all mature hormone producing cells. It is repressed by Notch signaling that prevents pancreatic cell differentiation by maintaining precursors in an undifferentiated state. We show herein that, in zebrafish, neurog3 is not expressed in the pancreas and null neurog3 mutant embryos do not display any apparent endocrine defects. The control of endocrine cell fate is instead fulfilled by a couple of bHLH factors, Ascl1b and Neurod1, that are both repressed by Notch signaling. ascl1b is transiently expressed in the mid-trunk endoderm just after gastrulation and is required for the generation of the first pancreatic endocrine precursor cells. Neurod1 is expressed afterwards in the pancreatic anlagen and pursues the endocrine cell differentiation program initiated by Ascl1b. Their complementary role in endocrine differentiation of the dorsal bud is demonstrated by the loss of all hormone-secreting cells following their simultaneous inactivation. This defect is due to a blockage of the initiation of endocrine cell differentiation. This study demonstrates that NEUROG3 is not the unique pancreatic endocrine cell fate determinant in vertebrates. A general survey of endocrine cell fate determinants in the whole digestive system among vertebrates indicates that they all belong to the ARP/ASCL family but not necessarily to the Neurog3 subfamily. The identity of the ARP/ASCL factor involved depends not only on the organ but also on the species. One could therefore consider differentiating stem cells into insulin-producing cells without the involvement of NEUROG3 but via another ARP/ASCL factor.
    BMC Biology 07/2013; 11(1):78. · 7.43 Impact Factor

Full-text (2 Sources)

Download
45 Downloads
Available from
Jun 4, 2014