MicroRNA modulate alveolar epithelial response to cyclic stretch

Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104-6321, USA.
BMC Genomics (Impact Factor: 4.04). 04/2012; 13:154. DOI: 10.1186/1471-2164-13-154
Source: PubMed

ABSTRACT MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression implicated in multiple cellular processes. Cyclic stretch of alveoli is characteristic of mechanical ventilation, and is postulated to be partly responsible for the lung injury and inflammation in ventilator-induced lung injury. We propose that miRNAs may regulate some of the stretch response, and therefore hypothesized that miRNAs would be differentially expressed between cyclically stretched and unstretched rat alveolar epithelial cells (RAECs).
RAECs were isolated and cultured to express type I epithelial characteristics. They were then equibiaxially stretched to 25% change in surface area at 15 cycles/minute for 1 hour or 6 hours, or served as unstretched controls, and miRNAs were extracted. Expression profiling of the miRNAs with at least 1.5-fold change over controls revealed 42 miRNAs were regulated (34 up and 8 down) with stretch. We validated 6 of the miRNAs using real-time PCR. Using a parallel mRNA array under identical conditions and publicly available databases, target genes for these 42 differentially regulated miRNAs were identified. Many of these genes had significant up- or down-regulation under the same stretch conditions. There were 362 down-regulated genes associated with up-regulated miRNAs, and 101 up-regulated genes associated with down-regulated miRNAs. Specific inhibition of two selected miRNAs demonstrated a reduction of the increased epithelial permeability seen with cyclic stretch.
We conclude that miRNA expression is differentially expressed between cyclically stretched and unstretched alveolar epithelial cells, and may offer opportunities for therapeutic intervention to ameliorate stretch-associated alveolar epithelial cell dysfunction.

Download full-text


Available from: Adi Yerrapureddy, Dec 31, 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are class of molecular regulators found to participate in numerous biological processes, such as adipogenesis and obesity in mammals. To determine the roles of miRNAs involved in castration-induced body fatness, we investigated the different miRNA expression patterns in subcutaneous adipose tissue between intact and castrated male pigs. Our results showed that castration led to decrease serum testosterone but increase serum Leptin levels (P < 0.01). Moreover, castration also increased adipocyte size, body fat content and backfat thickness in male pigs (P < 0.01). Meanwhile, miRNA expression profiles in adipose tissue were changed by castration, and 18 miRNAs were considered as the differentially expressed candidates between intact and castrated male pigs. Furthermore, functional analysis indicated that the differential expressed miRNAs and their target genes are involved in the regulation of fatty acid metabolism. In brief, our present study provides a comprehensive view on how miRNAs works in subcutaneous adipose tissue with castration. These results suggested that miRNAs might play an important role in the castration-induced fat deposition in male pigs.
    Journal of applied genetics 01/2014; 55(2). DOI:10.1007/s13353-014-0194-0 · 1.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stretch affects vascular smooth muscle cell proliferation and apoptosis, and several responsible genes have been proposed. We tested whether the expression of microRNA 21 (miR-21) is modulated by stretch and is involved in stretch-induced proliferation and apoptosis of human aortic smooth muscle cells (HASMCs). RT-PCR revealed that elevated stretch (16% elongation, 1 Hz) increased miR-21 expression in cultured HASMCs, and moderate stretch (10% elongation, 1 Hz) decreased the expression. BrdU incorporation assay and cell counting showed miR-21 involved in the proliferation of HASMCs mediated by stretch, likely by regulating the expression of p27 and phosphorylated retinoblastoma protein (p-Rb). FACS analysis revealed that the complex of miR-21 and programmed cell death protein 4 (PDCD4) participated in regulating apoptosis with stretch. Stretch increased the expression of primary miR-21 and pre-miR-21 in HASMCs. Electrophoretic mobility shift assay (EMSA) demonstrated that stretch increased NF-κB and AP-1 activities in HASMCs, and blockade of AP-1 activity by c-jun siRNA significantly suppressed stretch-induced miR-21 expression. Cyclic stretch modulates miR-21 expression in cultured HASMCs, and miR-21 plays important roles in regulating proliferation and apoptosis mediated by stretch. Stretch upregulates miR-21 expression at least in part at the transcription level and AP-1 is essential for stretch-induced miR-21 expression.
    PLoS ONE 10/2012; 7(10):e47657. DOI:10.1371/journal.pone.0047657 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are a class of small noncoding RNA which exert post-transcriptional gene regulation activity by targeting messenger RNAs. miRNAs have been found to be involved in various fundamental biological processes and deregulation of miRNAs is known to result in pathological conditions. In this review, we provide an overview of recent discoveries on the role played by this class of molecules in lung development and in pulmonary diseases, such as asthma, cystic fibrosis, chronic obstructive pulmonary disease, and pulmonary artery hypertension. Considering the relevant role of these miRNAs under physiological and pathological conditions, they represent new clinical targets as well as diagnostic and prognostic tools. Therefore, this review pays special attention to recent advances and possible future directions for the use of miRNAs for clinical applications.
    03/2013; 3(2):315-328. DOI:10.4103/2045-8932.114758