Article

Carnobacterium divergens - a dominating bacterium of pork meat juice.

Division of Microbiology, Department of Molecular Biology, University of Salzburg, Salzburg, Austria.
FEMS Microbiology Letters (Impact Factor: 2.05). 04/2012; 332(2):122-30. DOI: 10.1111/j.1574-6968.2012.02584.x
Source: PubMed

ABSTRACT Nonspoiled food that nevertheless contains bacterial pathogens constitutes a much more serious health problem than spoiled food, as the consumer is not warned beforehand. However, data on the diversity of bacterial species in meat juice are rare. To study the bacterial load of fresh pork from ten different distributors, we applied a combination of the conventional culture-based and molecular methods for detecting and quantifying the microbial spectrum of fresh pork meat juice samples. Altogether, we identified 23 bacterial species of ten different families analyzed by 16S rRNA gene sequencing. The majority of isolates were belonging to the typical spoilage bacterial population of lactic acid bacteria (LAB), Enterococcaceae, and Pseudomonadaceae. Several additional isolates were identified as Staphylococcus spp. and Bacillus spp. originating from human and animal skin and other environmental niches including plants, soil, and water. Carnobacterium divergens, a LAB contributing to the spoilage of raw meat even at refrigeration temperature, was the most frequently isolated species in our study (5/10) with a bacterial load of 10(3) - 10(7) CFU mL(-1). In several of the analyzed pork meat juice samples, two bacterial faecal indicators, Serratia grimesii and Serratia proteamaculans, were identified together with another opportunistic food-borne pathogen, Staphylococcus equorum. Our data reveal a high bacterial load of fresh pork meat supporting the potential health risk of meat juice for the end consumer even under refrigerated conditions.

1 Bookmark
 · 
243 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Packaging fresh lamb in a vacuum (VAC) versus a 100% CO2 modified atmosphere (MAP) may influence product shelf-life and the bacterial communities. While VAC is a common packing method and 100% CO2 MAP is used in some countries, there is little information about how these different techniques affect the growth of spoilage bacteria and sensory attributes of lamb. The aim of this study was to assess changes in microbiological and organoleptic properties, and determine differences in microbial communities by terminal restriction fragment length polymorphism (TRFLP) and 454 pyrosequencing, in bone-in (BI) and bone-out (BO) MAP- and VAC-packed lamb shoulders stored at -0.3 °C over 12 wk. VAC and MAP lamb shoulders were acceptable in sensory test scores over 12 wk of storage at -0.3 °C, despite total viable count (TVC) and lactic acid bacteria (LAB) levels increasing to 8 log10 CFU/cm(2) for VAC lamb and 4-6 log10 CFU/cm(2) for MAP lamb. Similar to the sensory results, there were no significant differences in microbial communities between BI and BO product. However, types of bacteria were different between VAC and MAP packaging. Specifically, while VAC shoulder became dominated by Carnobacterium spp. in the middle of the storage period, the MAP shoulder microbial population remained similar from the start until later storage times.
    Food Microbiology 12/2013; 36(2):305-15. · 3.41 Impact Factor